{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780ab2a97e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692938650331620806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMxirwpkFO6FhcguO9JH7Mg0uw5osg8NwAAgD8AAIA/QNK8PZo4BT5jyR69dr+NvlhZVr1U4yO9AAAAAAAAAACA+Gq9FGKXPUiyCD70gG6+i+TEvSRZlrwAAAAAAAAAAOaVxr15Uxo/BnbjPVbTub4Y8LW9spnpPQAAAAAAAAAAmvDEPfb0OLrSz+26ETDAtfZnzjlVvAs6AAAAAAAAgD/NoPC84X6BuqVwR7qRzfe1k0QbO1r3aDkAAIA/AACAPw0Sgz0pcCi6wk9OOdJnljTGCEw7+3hzuAAAgD8AAIA/2qfIvXvuorofBiY677IbNdgdVLrq9T65AACAPwAAAABmtbu9exKRuhh4Wrkz4VW0ov8TOdYrfTgAAIA/AACAP4A0tL32nFS6vjZAuhBjhTbY60W71n5fOQAAgD8AAIA/AOYlvHumh7ryiUY6njuetE46XTsLDWe5AACAPwAAgD/Nwp899vRBujVx2Dpm8vM1jmJ0ulIr/LkAAIA/AAAAACZ5wr0zF7s+Z5AfPr02kb6VcMu94SMWPQAAAAAAAAAAEyk2vtSFqbxOXbq4qpcRuDx8FT7NYUk4AACAPwAAgD/N9Ic8rvWluhKcbbmvP1a0bvO1uk6giDgAAIA/AACAP0BztT2PJhG6KOKpOnyKjjUF+a44dQzEuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP4k1dgOSaMAWyUTegDjAF0lEdAkfHK7yxzJnV9lChoBkdAZk1sEaESNGgHTegDaAhHQJHy3atcOb11fZQoaAZHQFz5X1anrIJoB03oA2gIR0CR8wQa72+PdX2UKGgGR0Bh7euLaVUuaAdN6ANoCEdAkf2RppN9IHV9lChoBkdAYnOHymQ8wGgHTegDaAhHQJH9yyTpxFR1fZQoaAZHQGMKSm65Gz9oB03oA2gIR0CSBrsfq5bydX2UKGgGR0BkrxGtp22YaAdN6ANoCEdAkgzqohpxm3V9lChoBkdAZezcB2fTTmgHTegDaAhHQJIOBU4rBj51fZQoaAZHQGV2TMaCL/FoB03oA2gIR0CSEJZ4fOlgdX2UKGgGR0BlCCz9jwx4aAdN6ANoCEdAkhb7sByS3nV9lChoBkdAZbfcqvvBrWgHTegDaAhHQJIqBckdFOR1fZQoaAZHQGSSTKs+3YtoB03oA2gIR0CSKy80UGmldX2UKGgGR0BmCljEvTPTaAdN6ANoCEdAki86ASWZ7XV9lChoBkdAYlqGM4tHx2gHTegDaAhHQJI1L+tKZlZ1fZQoaAZHQGVflWGRFJBoB03oA2gIR0CSNlWCVbA2dX2UKGgGR0BiFnh2nsLOaAdN6ANoCEdAkjdafzz3AXV9lChoBkdAZhZZg5R0l2gHTegDaAhHQJJAEOVgQYl1fZQoaAZHQF5kydnTRY1oB03oA2gIR0CSQNhUipvQdX2UKGgGR0BiFJdfLLZBaAdN6ANoCEdAkkDwCGN70HV9lChoBkdAZOz2ki2UjmgHTegDaAhHQJJIdVaOgg51fZQoaAZHQGLzCFj/dZdoB03oA2gIR0CSSKDmr8zidX2UKGgGR0BmzCGrS3LFaAdN6ANoCEdAklFbQ1JlKHV9lChoBkdAZU8nssxwhmgHTegDaAhHQJJYWU1Q66t1fZQoaAZHQGCn4bS7Xg9oB03oA2gIR0CSWZhnJ1aGdX2UKGgGR0BoCgouwosqaAdN6ANoCEdAklxxgy/KyXV9lChoBkdALCtKqXF98mgHS+BoCEdAkl9R2W6bv3V9lChoBkdAZhBaiblRxmgHTegDaAhHQJJjTXI2fkF1fZQoaAZHQGXacjiXIENoB03oA2gIR0CSZj0Sh8IBdX2UKGgGR0BgdiWPcSGraAdN6ANoCEdAkmd17tzCDXV9lChoBkdAXwGi22G7BmgHTegDaAhHQJKD3m9xp+N1fZQoaAZHQGLL3vphWo5oB03oA2gIR0CSiiP4VRDUdX2UKGgGR0BmS4QL/jsEaAdN6ANoCEdAkot1VktmMHV9lChoBkdAYUA9gWrOq2gHTegDaAhHQJKMfY8Md951fZQoaAZHQGOVtb9qDbtoB03oA2gIR0CSk9gKnei0dX2UKGgGR0Bj+8eS0Sh8aAdN6ANoCEdAkpSteMQ2/HV9lChoBkdAYW3L0z0pVmgHTegDaAhHQJKUx9AooeB1fZQoaAZHQG9OfgaWHDdoB03PAmgIR0CSnKxCY1HfdX2UKGgGR0BowwzWPLgXaAdN6ANoCEdAkp08+iaiK3V9lChoBkdAZT3M0P6KtWgHTegDaAhHQJKdY8fV7Qd1fZQoaAZHQE/FiQ1aW5ZoB0vxaAhHQJKp84ffXPJ1fZQoaAZHQGPQR+z+m3xoB03oA2gIR0CSrS0WdmQKdX2UKGgGR0Bit0ZNwiqyaAdN6ANoCEdAkrB5N9H+ZXV9lChoBkdAY9I0AtFrmGgHTegDaAhHQJKzu5y2hIx1fZQoaAZHQGb0DArQPZtoB03oA2gIR0CSuGQ40dildX2UKGgGR0BldyLqD9OzaAdN6ANoCEdAkrtqV+qioXV9lChoBkdAZEHCxeLNwGgHTegDaAhHQJK8LDZUT+N1fZQoaAZHQGTb/Vy3kPtoB03oA2gIR0CSzrXxOLzgdX2UKGgGR0Bhk7DuSfUXaAdN6ANoCEdAktKDnq3VkXV9lChoBkdAZM5p7CzkZWgHTegDaAhHQJLTV4MWoFV1fZQoaAZHQGdcT8xbjcVoB03oA2gIR0CS1Alb/wRXdX2UKGgGR0BoPLVhCtzTaAdN6ANoCEdAktsteY2KmHV9lChoBkdAaGgAwwj+rGgHTegDaAhHQJLcA6hg3Lp1fZQoaAZHQGTykAYHgP5oB03oA2gIR0CS3B3YL9dedX2UKGgGR0BOpS5qdpZfaAdL2mgIR0CS3RO801qGdX2UKGgGR0BnUWUD+zdDaAdN6ANoCEdAkuLKTwDvE3V9lChoBkdAYZsVAzHjqGgHTegDaAhHQJLjaKP4mC11fZQoaAZHQDHMOtnwob5oB0vYaAhHQJLmoWKuSwJ1fZQoaAZHQHF0emelKsdoB02LAWgIR0CS9RE74i5edX2UKGgGR0Bjg0UXYUWVaAdN6ANoCEdAkvUnf2saKnV9lChoBkdAaE07K7qY7mgHTegDaAhHQJL4dVYISlF1fZQoaAZHQGbMaeoUBXFoB03oA2gIR0CS+u6reZXudX2UKGgGR0BiJU1IiC8OaAdN6ANoCEdAkv02LP2PDHV9lChoBkdAYXqUSIxgzGgHTegDaAhHQJMAhBLPD511fZQoaAZHQGjnJzkp7TloB03oA2gIR0CTAs8OkLx7dX2UKGgGR0BjkMpmVZ9vaAdN6ANoCEdAkwOTcEeQuHV9lChoBkdAY0yxcmjTKGgHTegDaAhHQJMWwhkiD/V1fZQoaAZHQGIIJ17pmmNoB03oA2gIR0CTG7SX+l0pdX2UKGgGR0BnqDZtelbeaAdN6ANoCEdAkxx7C3w1BXV9lChoBkdATvQEhaC+UWgHS7poCEdAkyB7UTcqOXV9lChoBkdAY3YzPa+N+GgHTegDaAhHQJMnWlVLi/B1fZQoaAZHQGiGvqC6H0toB03oA2gIR0CTKO6VdHDrdX2UKGgGR0BntVjVhCtzaAdN6ANoCEdAkzG25hBqsXV9lChoBkdAaABd1MdtEWgHTegDaAhHQJMyinfl6qt1fZQoaAZHQGQhinP3SKFoB03oA2gIR0CTNazjFQ2udX2UKGgGR0BkM72criEQaAdN6ANoCEdAkz94qXnhbXV9lChoBkdAY/nPwd8zAWgHTegDaAhHQJM/iK77Kq51fZQoaAZHQGGmhUzbeuVoB03oA2gIR0CTQds+V1OkdX2UKGgGR0BvYt3fQ8fWaAdNwwNoCEdAk0JfICEHuHV9lChoBkdAcflmLLpzLmgHTaECaAhHQJNEeePJaJR1fZQoaAZHQGRo3kYGdI5oB03oA2gIR0CTRocSoOx0dX2UKGgGR0BkGpczImw8aAdN6ANoCEdAk0nOG47Rv3V9lChoBkdAYxZySV4X42gHTegDaAhHQJNMHpzLfUF1fZQoaAZHQGQHqGlANXpoB03oA2gIR0CTTOBYFJQMdX2UKGgGR0Bw/9N47ihnaAdNeAFoCEdAk2dbHAAQx3V9lChoBkdAYwLWilBQemgHTegDaAhHQJNoBWHUMG51fZQoaAZHQGJZArH2h7FoB03oA2gIR0CTbZSfDk2hdX2UKGgGR0ByeXNNahYeaAdNsQFoCEdAk27NRWLgoHV9lChoBkdAYYcHyEtdzGgHTegDaAhHQJNzjZ+QU6B1fZQoaAZHQGNsldszl91oB03oA2gIR0CTdJ8xKxs3dX2UKGgGR0BoBNic5Ke1aAdN6ANoCEdAk3pgX668QXV9lChoBkdAZF17F85S32gHTegDaAhHQJN67Ns3yZt1fZQoaAZHQGQw5le4TbpoB03oA2gIR0CTfVee4Cp4dX2UKGgGR0Bm4pw0fozOaAdN6ANoCEdAk4eC9RJmNHV9lChoBkdAZ2GaQ3gk1WgHTegDaAhHQJOHk0Q9RrJ1fZQoaAZHQGcBCYb83uNoB03oA2gIR0CTilBHTZxrdX2UKGgGR0BiZFLJ0W/KaAdN6ANoCEdAk4+qEvkBCHV9lChoBkdAcTm+I/JNkGgHTacCaAhHQJOSnAXVLBd1fZQoaAZHQGNeysS00FdoB03oA2gIR0CTk00Lc9GJdX2UKGgGR0BmKhuuRs/IaAdN6ANoCEdAk5Wy/sVtXXV9lChoBkdAX6o4ACGN72gHTegDaAhHQJOWfh5xBE91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}