--- base_model: - fano-kr/Llama-3-fano-Kor-8B-dora - MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - merge - mergekit - lazymergekit - fano-kr/Llama-3-fano-Kor-8B-dora - MLP-KTLim/llama-3-Korean-Bllossom-8B --- # Llama-3-Kor-Finance-8B-slerp Llama-3-Kor-Finance-8B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [fano-kr/Llama-3-fano-Kor-8B-dora](https://huggingface.co/fano-kr/Llama-3-fano-Kor-8B-dora) * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) ## 🧩 Configuration ```yaml slices: - sources: - model: fano-kr/Llama-3-fano-Kor-8B-dora layer_range: [0, 32] - model: MLP-KTLim/llama-3-Korean-Bllossom-8B layer_range: [0, 32] merge_method: slerp base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 embed_slerp: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fano-kr/Llama-3-Kor-Finance-8B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```