--- language: - multilingual - fr - de - es - ca - it - ru - zh - pt - fa - et - mn - nl - tr - ar - sv - lv - sl - ta - ja - id - cy - en datasets: - common_voice - multilingual_librispeech - covost2 tags: - speech - xls_r - automatic-speech-recognition - xls_r_translation pipeline_tag: automatic-speech-recognition license: apache-2.0 widget: - example_title: Swedish src: https://cdn-media.huggingface.co/speech_samples/cv_swedish_1.mp3 - example_title: Arabic src: https://cdn-media.huggingface.co/speech_samples/common_voice_ar_19058308.mp3 - example_title: Russian src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3 - example_title: German src: https://cdn-media.huggingface.co/speech_samples/common_voice_de_17284683.mp3 - example_title: French src: https://cdn-media.huggingface.co/speech_samples/common_voice_fr_17299386.mp3 - example_title: Indonesian src: https://cdn-media.huggingface.co/speech_samples/common_voice_id_19051309.mp3 - example_title: Italian src: https://cdn-media.huggingface.co/speech_samples/common_voice_it_17415776.mp3 - example_title: Japanese src: https://cdn-media.huggingface.co/speech_samples/common_voice_ja_19482488.mp3 - example_title: Mongolian src: https://cdn-media.huggingface.co/speech_samples/common_voice_mn_18565396.mp3 - example_title: Dutch src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3 - example_title: Russian src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3 - example_title: Turkish src: https://cdn-media.huggingface.co/speech_samples/common_voice_tr_17341280.mp3 - example_title: Catalan src: https://cdn-media.huggingface.co/speech_samples/common_voice_ca_17367522.mp3 - example_title: English src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 - example_title: Dutch src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3 --- # Wav2Vec2-XLS-R-2b-21-EN Facebook's Wav2Vec2 XLS-R fine-tuned for **Speech Translation.** ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png) This is a [SpeechEncoderDecoderModel](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html) model. The encoder was warm-started from the [**`facebook/wav2vec2-xls-r-1b`**](https://huggingface.co/facebook/wav2vec2-xls-r-1b) checkpoint and the decoder from the [**`facebook/mbart-large-50`**](https://huggingface.co/facebook/mbart-large-50) checkpoint. Consequently, the encoder-decoder model was fine-tuned on 21 `{lang}` -> `en` translation pairs of the [Covost2 dataset](https://huggingface.co/datasets/covost2). The model can translate from the following spoken languages `{lang}` -> `en` (English): {`fr`, `de`, `es`, `ca`, `it`, `ru`, `zh-CN`, `pt`, `fa`, `et`, `mn`, `nl`, `tr`, `ar`, `sv-SE`, `lv`, `sl`, `ta`, `ja`, `id`, `cy`} -> `en` For more information, please refer to Section *5.1.2* of the [official XLS-R paper](https://arxiv.org/abs/2111.09296). ## Usage ### Demo The model can be tested directly on the speech recognition widget on this model card! Simple record some audio in one of the possible spoken languages or pick an example audio file to see how well the checkpoint can translate the input. ### Example As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. You can use the model directly via the ASR pipeline ```python from datasets import load_dataset from transformers import pipeline # replace following lines to load an audio file of your choice librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") audio_file = librispeech_en[0]["file"] asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-21-to-en") translation = asr(audio_file) ``` or step-by-step as follows: ```python import torch from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel from datasets import load_dataset model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en") tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en") librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") sample = librispeech_en[0]["audio"] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt") generated_ids = model.generate(**inputs) transcription = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Results `{lang}` -> `en` See the row of **XLS-R (1B)** for the performance on [Covost2](https://huggingface.co/datasets/covost2) for this model. ![results image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/X-%3EEnglish.png) ## More XLS-R models for `{lang}` -> `en` Speech Translation - [Wav2Vec2-XLS-R-300M-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-300m-21-to-en) - [Wav2Vec2-XLS-R-1B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-1b-21-to-en) - [Wav2Vec2-XLS-R-2B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-2b-21-to-en) - [Wav2Vec2-XLS-R-2B-22-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16)