--- tags: - model_hub_mixin - pytorch_model_hub_mixin metrics: - F1 - Precision - Recall - ROC-AUC --- # ARespiratory audio classification model This model classifies respiratory audio recordings from the [ICBHI 2017 Challenge](https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge) dataset into **crackles**, **wheezes**, **both**, or **none** (multi-label classification). It utilizes the [AST encoder](https://huggingface.co/MIT/ast-finetuned-audioset-14-14-0.443) (`MIT/ast-finetuned-audioset-14-14-0.443`) with a lightweight classification head. The model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration. --- ## **Dataset** - **Source:** [ICBHI 2017 Challenge](https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge) --- ## **Performance metrics** | **Label** | **F1** | **Precision** | **Recall** | **AUC** | |--------------|---------|---------------|------------|-----------| | **Crackle** | 0.6756 | 0.6147 | 0.7500 | 0.7033 | | **Wheeze** | 0.4853 | 0.6565 | 0.3849 | 0.8031 | | **Macro Avg**| 0.5805 | 0.6356 | 0.5674 | 0.7532 | --- ## **Usage** Run inference using [`s05_inference.py`](https://github.com/fabiocat93/icbhi_2017_challenge/blob/main/src/code/s05_inference.py). Ensure you install the necessary dependencies. For setup instructions, please see the [documentation](https://github.com/fabiocat93/icbhi_2017_challenge). --- ## **Notes** For additional details, check the [documentation notes](https://github.com/fabiocat93/icbhi_2017_challenge/edit/main/docs/notes.md). --- ## **Contact** For any questions or further information, feel free to reach out via email: **[fabiocat@mit.edu](mailto:fabiocat@mit.edu)**.