--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment_deberta results: [] --- # sentiment_deberta This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7123 - Accuracy: 0.6938 - F1: 0.6401 - Precision: 0.6262 - Recall: 0.6854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.087 | 1.0 | 47 | 1.1008 | 0.2551 | 0.3042 | 0.4734 | 0.4956 | | 0.9933 | 2.0 | 94 | 0.9692 | 0.5545 | 0.5098 | 0.5126 | 0.5496 | | 0.8709 | 3.0 | 141 | 0.9352 | 0.5003 | 0.5003 | 0.5301 | 0.5804 | | 0.8444 | 4.0 | 188 | 0.8729 | 0.5874 | 0.5602 | 0.5671 | 0.6204 | | 0.7833 | 5.0 | 235 | 0.9394 | 0.4778 | 0.4980 | 0.5643 | 0.6353 | | 0.7003 | 6.0 | 282 | 0.7279 | 0.6834 | 0.6306 | 0.6150 | 0.6828 | | 0.6383 | 7.0 | 329 | 0.7808 | 0.6390 | 0.6123 | 0.6073 | 0.7007 | | 0.5996 | 8.0 | 376 | 0.7379 | 0.6802 | 0.6367 | 0.6231 | 0.6993 | | 0.5514 | 9.0 | 423 | 0.7846 | 0.6745 | 0.6204 | 0.6015 | 0.6901 | | 0.4837 | 10.0 | 470 | 0.7123 | 0.6938 | 0.6401 | 0.6262 | 0.6854 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1