--- license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment_deberta results: [] --- # sentiment_deberta This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6252 - Accuracy: 0.7418 - F1: 0.6848 - Precision: 0.6668 - Recall: 0.7317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7168 | 1.0 | 94 | 0.8071 | 0.6421 | 0.6022 | 0.6012 | 0.6733 | | 0.6442 | 2.0 | 188 | 0.6195 | 0.7428 | 0.6789 | 0.6617 | 0.7176 | | 0.5657 | 3.0 | 282 | 0.7655 | 0.6615 | 0.6319 | 0.6301 | 0.7172 | | 0.5001 | 4.0 | 376 | 0.6058 | 0.7465 | 0.6896 | 0.6717 | 0.7352 | | 0.5145 | 5.0 | 470 | 0.6252 | 0.7418 | 0.6848 | 0.6668 | 0.7317 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1