--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: logs results: [] --- # logs This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0405 - Accuracy: 0.9950 - Precision: 0.9950 - Recall: 0.9950 - F1 Score: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.1436 | 1.0 | 907 | 0.0851 | 0.9829 | 0.9829 | 0.9829 | 0.9829 | | 0.0737 | 2.0 | 1814 | 0.0548 | 0.9915 | 0.9915 | 0.9915 | 0.9915 | | 0.0216 | 3.0 | 2721 | 0.0469 | 0.9917 | 0.9918 | 0.9917 | 0.9917 | | 0.0143 | 4.0 | 3628 | 0.0405 | 0.9950 | 0.9950 | 0.9950 | 0.9950 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1