import argparse import tensorflow as tf import os import pandas as pd import numpy as np from PIL import Image import io from sklearn.model_selection import train_test_split def load_and_preprocess_data(dataset_path, target_size=(64, 64)): data_csv = pd.read_csv(dataset_path) def bytes_to_image(byte_str): image = Image.open(io.BytesIO(byte_str)) return np.array(image) images = [bytes_to_image(eval(row['image'])['bytes']) for _, row in data_csv.iterrows()] labels = data_csv['label'].values def resize_and_gray_image(image): image = Image.fromarray((image * 255).astype(np.uint8)) image = image.convert('L') return np.array(image.resize(target_size)) images_processed = [resize_and_gray_image(img) for img in images] images_processed = np.array(images_processed).astype('float32') / 255.0 images_processed = images_processed.reshape(images_processed.shape[0], 64, 64, 1) return images_processed, labels def main(model_path, saved_gradients_dir, dataset_path, save_path): # Load the data X, y = load_and_preprocess_data(dataset_path) X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Load the model model = tf.keras.models.load_model(model_path) optimizer = tf.keras.optimizers.Adam() # Load gradients from saved files gradient_files = sorted(os.listdir(saved_gradients_dir)) loaded_gradients = [np.load(os.path.join(saved_gradients_dir, file)) for file in gradient_files if file.startswith("gradient_")] # Convert gradients to tensors loaded_gradients = [tf.convert_to_tensor(grad) for grad in loaded_gradients] # Check compatibility of shapes and apply gradients compatible_shapes = all([tf_var.shape == grad.shape for tf_var, grad in zip(model.trainable_variables, loaded_gradients)]) if compatible_shapes: optimizer.apply_gradients(zip(loaded_gradients, model.trainable_variables)) print("Gradients applied successfully!") else: print("Mismatch in shapes detected! Gradients were not applied.") # Evaluate the model val_loss, val_accuracy = model.evaluate(X_val, y_val) print(f"Validation Accuracy: {val_accuracy * 100:.2f}%") # Save the model model.save(save_path) print(f"Model saved to {save_path}") if __name__ == '__main__': parser = argparse.ArgumentParser(description='Load a model, apply gradients from saved files, evaluate and save the model.') parser.add_argument('--model_path', type=str, default='/brain_tumor_classifier.h5', help='Path to the model file.') parser.add_argument('--saved_gradients', type=str, default='/saved_gradients', help='Directory where gradient files are saved.') parser.add_argument('--dataset_path', type=str, default='yes-no-brain-tumor-train.csv', help='Path to the dataset.') parser.add_argument('--save_path', type=str, default='/outputs/brain_tumor_classifier_updated.h5', help='Path to save the updated model.') args = parser.parse_args() main(args.model_path, args.saved_gradients, args.dataset_path, args.save_path)