|
import argparse |
|
import tensorflow as tf |
|
from tensorflow.keras.preprocessing.image import load_img, img_to_array |
|
import os |
|
import numpy as np |
|
import uuid |
|
|
|
def main(image_dir, model_path, gradients_save_path): |
|
|
|
target_size = (32, 32) |
|
images_list = [] |
|
for img_path in os.listdir(image_dir): |
|
full_path = os.path.join(image_dir, img_path) |
|
if os.path.isfile(full_path): |
|
image = load_img(full_path, target_size=(64, 64), color_mode='grayscale') |
|
image_arr = img_to_array(image) / 255.0 |
|
images_list.append(image_arr) |
|
|
|
data = np.array(images_list) |
|
|
|
|
|
model = tf.keras.models.load_model(model_path) |
|
model.summary() |
|
|
|
|
|
if data is not None and len(data) > 0: |
|
pseudo_labels = model.predict(data) |
|
else: |
|
print("The data variable is empty!") |
|
|
|
def compute_gradients(model, data, labels): |
|
with tf.GradientTape() as tape: |
|
predictions = model(data, training=True) |
|
loss = tf.keras.losses.categorical_crossentropy(labels, predictions) |
|
gradients = tape.gradient(loss, model.trainable_variables) |
|
return gradients |
|
|
|
gradients = compute_gradients(model, data, pseudo_labels) |
|
|
|
|
|
os.makedirs(gradients_save_path, exist_ok=True) |
|
|
|
for grad in gradients: |
|
gradient_id = uuid.uuid4() |
|
path = os.path.join(gradients_save_path, f'gradient_{gradient_id}.npy') |
|
np.save(path, grad.numpy()) |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Load images, use model to predict and compute gradients.') |
|
parser.add_argument('--image_dir', type=str, default='/content/brain_tumor_dataset', help='Directory where images are located.') |
|
parser.add_argument('--model_path', type=str, default='/content/brain_tumor_classifier.h5', help='Path to the model file.') |
|
parser.add_argument('--gradients_save_path', type=str, default='saved_gradients', help='Directory where gradients will be saved.') |
|
|
|
args = parser.parse_args() |
|
main(args.image_dir, args.model_path, args.gradients_save_path) |
|
|