{"policy_class": {":type:": "", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1bf1107040>"}, "verbose": 1, "policy_kwargs": {"net_arch": [512, 512, 512], "n_critics": 2, "use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726843926512342379, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuyhrPQZI/z1hwaM8ghpPPXWRADvQv6M86AIkPTeWEL5hwaM8r9+cvHPg5D3WwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdO86vSdx0D2lhkM+z1CYvCXkGL6Y3Tg+BdENPkGlnj2l4kk+NYfqvYLBhr1iwOU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACUguE9NwNMvr2q+D1NLFY7bSrVveuC1r2F1qM9uyhrPQZI/z1hwaM8pqViNwPUbrePJDe6iAbFt5m7qLcgdXEttM9aMtOeZzIX3xO6GP8OPh/pmL6cNU08w2TWvQSIhD2rob6+ENCjPYIaTz11kQA70L+jPFbYjDiOOhs30yhRud6tqbda2xe2EBVPrOcyTC8dWlsuuMX7uAW4sj3ohbw91UV9PhLJBT56M0M+17jVvr9uizToAiQ9N5YQvmHBozyWMG+3DyliNzrjujik4ag3Ow7FN4BP9rGguqo0bJQ1NWIFFDr+oQI8ghZWvkExPz5gOQO+WMrlviskQD4eorwzr9+cvHPg5D3WwKM8WJiWtv/VGTj8mw+410YxNUjFN7es1mKtTcWTrk9bPzCLnMq4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.05741189 0.12464909 0.01998967]\n [ 0.05056239 0.00196179 0.01998892]\n [ 0.04004183 -0.14119802 0.01998967]\n [-0.01914963 0.11175623 0.01998941]]", "desired_goal": "[[-0.04563852 0.10177832 0.19094332]\n [-0.01859322 -0.1493078 0.18053281]\n [ 0.13849266 0.07746363 0.19715364]\n [-0.1145157 -0.06579877 0.11218335]]", "observation": "[[ 1.10112339e-01 -1.99231014e-01 1.21419407e-01 3.26802139e-03\n -1.04084827e-01 -1.04741894e-01 7.99990073e-02 5.74118905e-02\n 1.24649093e-01 1.99896712e-02 1.35092178e-05 -1.42352683e-05\n -6.98634365e-04 -2.34872714e-05 -2.01145176e-05 1.37252709e-11\n 1.27364963e-08 1.34820821e-08 -5.64084796e-04]\n [ 1.39644980e-01 -2.98653573e-01 1.25249885e-02 -1.04684375e-01\n 6.47125542e-02 -3.72327179e-01 7.99866915e-02 5.05623892e-02\n 1.96179491e-03 1.99889243e-02 6.71601592e-05 9.25235327e-06\n -1.99470014e-04 -2.02273332e-05 -2.26284328e-06 -2.94281613e-12\n 1.85717761e-10 4.98748716e-11 -1.20054407e-04]\n [ 8.72650519e-02 9.20522809e-02 2.47336701e-01 1.30649835e-01\n 1.90626055e-01 -4.17425841e-01 2.59713460e-07 4.00418341e-02\n -1.41198024e-01 1.99896712e-02 -1.42568224e-05 1.34802094e-05\n 8.91149539e-05 2.01322327e-05 2.34908566e-05 -7.16858040e-09\n 3.18007551e-07 6.76437367e-07 5.64655405e-04]\n [ 7.97319226e-03 -2.09070235e-01 1.86711326e-01 -1.28148556e-01\n -4.48809385e-01 1.87637970e-01 8.78392115e-08 -1.91496294e-02\n 1.11756228e-01 1.99894123e-02 -4.48808350e-06 3.66773420e-05\n -3.42391286e-05 6.60407238e-07 -1.09535831e-05 -1.28942794e-11\n -6.71983372e-11 6.96151525e-10 -9.66126900e-05]]"}, "_episode_num": 27339, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBgAAAAAAACMAWyUSweMAXSUR0CzfjAwoLG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czfpx42S+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzftJ1FH8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzfsIAKfFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czfy2gi/widX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czf50j1PFedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czf9OB19v1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czf8L8ejmCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgC8wco6TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgKBnezlcdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CzgNUwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgNnUpd8idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgMkmhM8HdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CzgQZooNNKdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CzgSPfTCtSdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzgUx95QgtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgTBxxT86dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CzgW/ykKu0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgcyEg4ffdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CzgenRgJC0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czgb4dU83ddX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzghAmzBykdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzghTCUHIIdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CzglJgG8mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czgh9jgAIZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czgl0BXCCSdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CzgleIEbHZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Czgozr7fpEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzgrPdyksSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czg1IrBj4IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czg1s1jy4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czg5A+t8u0dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0Czg3hyn1nNdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0Czg61aKUFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czg7NH+ZPVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhF5K3/gjdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzhI+k1uR+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhJgL7XQMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhM9NrTH9dX2UKGgGR8BGgAAAAAAAaAdLLmgIR0CzhMVndweedX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CzhPfuPV/ddX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CzhPlyBCladX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CzhTjtXxOMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhbYbGWD6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhbtN34bkdX2UKGgGR8AyAAAAAAAAaAdLE2gIR0CzhiPMGHHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhhkeQuEmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhlWaH9FXdX2UKGgGR8AqAAAAAAAAaAdLDmgIR0CzhnGPYFq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czhs/HxSYPdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzhwDS1E3LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzhzO4G2TgdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzhzA/5ckddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czh3Kl+EytdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0Czh1zMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czh44+jdpJdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0Czh4aTjebedX2UKGgGR8AoAAAAAAAAaAdLDWgIR0Czh309lmOEdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Czh74Vh1DCdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0Czh6kka/ATdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0Czh9ZLuhK2dX2UKGgGR8AmAAAAAAAAaAdLDGgIR0CziCAgDA8CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CziKIkzGgjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CziL4/eLvUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CziMRS1maqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CziMpVGTcJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CziNkvf0mMdX2UKGgGR8A1AAAAAAAAaAdLFmgIR0CziSay0KJEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CziUp4wAU+dX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CziWZUT+NtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzifUb5uZUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzifoVZcLSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzimE4//vOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzinxkEs8QdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CziqnPJJXhdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CzipPuw5eadX2UKGgGR8AiAAAAAAAAaAdLCmgIR0Czit1KPGQ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czivh1Tzd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzivvXPJJYdX2UKGgGR8AqAAAAAAAAaAdLDmgIR0Czi0HqNZNgdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Czi28guAZsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czi5Illbu/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czi9isXBP9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czi+7OmixndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjGGQfZEldX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CzjCeLWI43dX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CzjGqNlyzYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjIptzjm0dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CzjJWW+oLodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjNVB+nZTdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CzjOlmjCYUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjWpsTFl1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjZCyQgcMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjZshkiD/dX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CzjcmBBiTddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czje8pkPMCdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Czjhzd56dEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjmpO8CgcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzjpmsaKk3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Czjsczl90BdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmIiYmIiIiJiImIiYiIiImJiIiJiYmJiIiJiYiJiYiIiIiJiYiJiYiJiImIiYiJiIiIiIiIiYmIiImIiYiJiYmJiIiIiYmIiImJiYmIiImIiYiJiYmIiYiJiYllLg=="}, "_n_updates": 249750, "observation_space": {":type:": "", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR2cVXcJrDlqXIPYhO8uuvtQCMA2luY5SKELELOvwIjRhHhF4OXVxnPRJ1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "buffer_size": 1000000, "batch_size": 2048, "learning_starts": 1000, "tau": 0.05, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "", "__getstate__": "", "__setstate__": "", "set_env": "", "add": "", "_compute_episode_length": "", "sample": "", "_get_real_samples": "", "_get_virtual_samples": "", "_sample_goals": "", "truncate_last_trajectory": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1bf12f7940>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjF4vaG9tZS9sdXlhbmcvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL2hvbWUvbHV5YW5nL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoD4wMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJRoCSmMAV+UhZRoDowEZnVuY5RLhUMCBAGUjAN2YWyUhZQpdJRSlGgVTk5oHSlSlIWUdJRSlGgjaD19lH2UKGgYaDRoJowZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKH2UaCpOaCtOaCxoGWgtTmguaDBHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhFXZRoR32UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.8.0-41-generic-x86_64-with-glibc2.39 # 41-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 2 20:41:06 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}