Sanchit Gandhi
commited on
Commit
·
8061c27
1
Parent(s):
f597773
Add scripts and weights
Browse files- .gitattributes +1 -0
- README.md +47 -0
- medium.en.whisper +3 -0
- run_speech_recognition_whisper.py +747 -0
- run_switchboard.sh +35 -0
.gitattributes
CHANGED
|
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.whisper filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- esc
|
| 6 |
+
datasets:
|
| 7 |
+
- switchboard
|
| 8 |
+
---
|
| 9 |
+
To reproduce this run, execute:
|
| 10 |
+
```python
|
| 11 |
+
#!/usr/bin/env bash
|
| 12 |
+
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
|
| 13 |
+
--model_name_or_path="medium.en" \
|
| 14 |
+
--dataset_name="esc/esc-datasets" \
|
| 15 |
+
--dataset_config_name="switchboard" \
|
| 16 |
+
--max_steps="5000" \
|
| 17 |
+
--output_dir="./" \
|
| 18 |
+
--run_name="whisper-switchboard" \
|
| 19 |
+
--max_steps="5000" \
|
| 20 |
+
--output_dir="./" \
|
| 21 |
+
--run_name="whisper-switchboard" \
|
| 22 |
+
--wandb_project="whisper" \
|
| 23 |
+
--per_device_train_batch_size="64" \
|
| 24 |
+
--per_device_eval_batch_size="16" \
|
| 25 |
+
--logging_steps="25" \
|
| 26 |
+
--learning_rate="1e-4" \
|
| 27 |
+
--warmup_steps="500" \
|
| 28 |
+
--report_to="wandb" \
|
| 29 |
+
--preprocessing_num_workers="16" \
|
| 30 |
+
--evaluation_strategy="steps" \
|
| 31 |
+
--eval_steps="1000" \
|
| 32 |
+
--save_strategy="steps" \
|
| 33 |
+
--save_steps="1000" \
|
| 34 |
+
--generation_max_length="224" \
|
| 35 |
+
--length_column_name="input_lengths" \
|
| 36 |
+
--gradient_checkpointing \
|
| 37 |
+
--group_by_length \
|
| 38 |
+
--freeze_encoder \
|
| 39 |
+
--fp16 \
|
| 40 |
+
--overwrite_output_dir \
|
| 41 |
+
--do_train \
|
| 42 |
+
--do_eval \
|
| 43 |
+
--do_predict \
|
| 44 |
+
--predict_with_generate \
|
| 45 |
+
--use_auth_token
|
| 46 |
+
|
| 47 |
+
```
|
medium.en.whisper
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a667fb55dfa9d15928c4169d324d45f59e371fafcd41661c8e54da370c8a415
|
| 3 |
+
size 3055771163
|
run_speech_recognition_whisper.py
ADDED
|
@@ -0,0 +1,747 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Fine-tuning OpenAI Whisper models for speech recognition.
|
| 17 |
+
"""
|
| 18 |
+
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
| 19 |
+
# flake8: noqa: E501
|
| 20 |
+
import logging
|
| 21 |
+
import os
|
| 22 |
+
|
| 23 |
+
import whisper
|
| 24 |
+
import sys
|
| 25 |
+
from dataclasses import dataclass, field
|
| 26 |
+
import tempfile
|
| 27 |
+
|
| 28 |
+
from typing import Optional, Dict, Union, List
|
| 29 |
+
|
| 30 |
+
import numpy as np
|
| 31 |
+
import torch
|
| 32 |
+
|
| 33 |
+
import datasets
|
| 34 |
+
from datasets import DatasetDict, load_dataset
|
| 35 |
+
import transformers
|
| 36 |
+
from torch import nn
|
| 37 |
+
from transformers import (
|
| 38 |
+
HfArgumentParser,
|
| 39 |
+
Seq2SeqTrainingArguments,
|
| 40 |
+
set_seed,
|
| 41 |
+
Seq2SeqTrainer,
|
| 42 |
+
)
|
| 43 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
| 44 |
+
from transformers.utils import check_min_version
|
| 45 |
+
from transformers.utils.versions import require_version
|
| 46 |
+
|
| 47 |
+
import wandb
|
| 48 |
+
|
| 49 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 50 |
+
check_min_version("4.17.0.dev0")
|
| 51 |
+
|
| 52 |
+
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
| 53 |
+
|
| 54 |
+
logger = logging.getLogger(__name__)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@dataclass
|
| 58 |
+
class ModelArguments:
|
| 59 |
+
"""
|
| 60 |
+
Arguments pertaining to which model/tokenizer we are going to fine-tune from.
|
| 61 |
+
"""
|
| 62 |
+
model_name_or_path: Optional[str] = field(
|
| 63 |
+
default=None,
|
| 64 |
+
metadata={"help": "Path to pretrained model or model identifier from OpenAI Whisper NGC."}
|
| 65 |
+
)
|
| 66 |
+
cache_dir: Optional[str] = field(
|
| 67 |
+
default=None,
|
| 68 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co or OpenAI Whisper NGC."},
|
| 69 |
+
)
|
| 70 |
+
use_auth_token: bool = field(
|
| 71 |
+
default=False,
|
| 72 |
+
metadata={
|
| 73 |
+
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
| 74 |
+
"with private models)."
|
| 75 |
+
},
|
| 76 |
+
)
|
| 77 |
+
manifest_path: str = field(
|
| 78 |
+
default="data",
|
| 79 |
+
metadata={
|
| 80 |
+
"help": "Manifest path."
|
| 81 |
+
},
|
| 82 |
+
)
|
| 83 |
+
tokenizer_path: str = field(
|
| 84 |
+
default="tokenizers",
|
| 85 |
+
metadata={
|
| 86 |
+
"help": "Tokenizer path."
|
| 87 |
+
},
|
| 88 |
+
)
|
| 89 |
+
freeze_encoder: bool = field(
|
| 90 |
+
default=False,
|
| 91 |
+
metadata={"help": "Freeze the acoustic encoder of the model. Recommend when fine-tuning on small datasets."}
|
| 92 |
+
)
|
| 93 |
+
num_beams: int = field(
|
| 94 |
+
default=1,
|
| 95 |
+
metadata={"help": "Number of beams for evaluation."},
|
| 96 |
+
)
|
| 97 |
+
length_penalty: float = field(
|
| 98 |
+
default=1.0,
|
| 99 |
+
metadata={"help": "Length penalty for evaluation."},
|
| 100 |
+
)
|
| 101 |
+
use_adam8bit: bool = field(
|
| 102 |
+
default=False,
|
| 103 |
+
metadata={"help": "Whether to use bitsandbytes 8bit AdamW optimiser."}
|
| 104 |
+
)
|
| 105 |
+
dropout_rate: float = field(
|
| 106 |
+
default=0.0,
|
| 107 |
+
metadata={"help": "The dropout ratio for all dropout layers (default=0)."}
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@dataclass
|
| 112 |
+
class DataTrainingArguments:
|
| 113 |
+
"""
|
| 114 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
dataset_name: str = field(
|
| 118 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
| 119 |
+
)
|
| 120 |
+
dataset_config_name: Optional[str] = field(
|
| 121 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 122 |
+
)
|
| 123 |
+
text_column: Optional[str] = field(
|
| 124 |
+
default=None,
|
| 125 |
+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
| 126 |
+
)
|
| 127 |
+
dataset_cache_dir: Optional[str] = field(
|
| 128 |
+
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}
|
| 129 |
+
)
|
| 130 |
+
overwrite_cache: bool = field(
|
| 131 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
| 132 |
+
)
|
| 133 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 134 |
+
default=None,
|
| 135 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 136 |
+
)
|
| 137 |
+
max_train_samples: Optional[int] = field(
|
| 138 |
+
default=None,
|
| 139 |
+
metadata={
|
| 140 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 141 |
+
"value if set."
|
| 142 |
+
},
|
| 143 |
+
)
|
| 144 |
+
max_eval_samples: Optional[int] = field(
|
| 145 |
+
default=None,
|
| 146 |
+
metadata={
|
| 147 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 148 |
+
"value if set."
|
| 149 |
+
},
|
| 150 |
+
)
|
| 151 |
+
max_predict_samples: Optional[int] = field(
|
| 152 |
+
default=None,
|
| 153 |
+
metadata={
|
| 154 |
+
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
|
| 155 |
+
"value if set."
|
| 156 |
+
},
|
| 157 |
+
)
|
| 158 |
+
audio_column_name: str = field(
|
| 159 |
+
default="audio",
|
| 160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
| 161 |
+
)
|
| 162 |
+
text_column_name: str = field(
|
| 163 |
+
default="text",
|
| 164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
| 165 |
+
)
|
| 166 |
+
max_duration_in_seconds: float = field(
|
| 167 |
+
default=20.0,
|
| 168 |
+
metadata={
|
| 169 |
+
"help": "Truncate training audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
| 170 |
+
},
|
| 171 |
+
)
|
| 172 |
+
min_duration_in_seconds: float = field(
|
| 173 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
| 174 |
+
)
|
| 175 |
+
max_eval_duration_in_seconds: float = field(
|
| 176 |
+
default=None,
|
| 177 |
+
metadata={
|
| 178 |
+
"help": "Truncate eval/test audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
| 179 |
+
},
|
| 180 |
+
)
|
| 181 |
+
max_target_length: Optional[int] = field(
|
| 182 |
+
default=128,
|
| 183 |
+
metadata={
|
| 184 |
+
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
| 185 |
+
"than this will be truncated, sequences shorter will be padded."
|
| 186 |
+
},
|
| 187 |
+
)
|
| 188 |
+
min_target_length: Optional[int] = field(
|
| 189 |
+
default=0,
|
| 190 |
+
metadata={
|
| 191 |
+
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
|
| 192 |
+
"than this will be filtered."
|
| 193 |
+
},
|
| 194 |
+
)
|
| 195 |
+
preprocessing_only: bool = field(
|
| 196 |
+
default=False,
|
| 197 |
+
metadata={
|
| 198 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
| 199 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
| 200 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
| 201 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
| 202 |
+
},
|
| 203 |
+
)
|
| 204 |
+
train_split_name: str = field(
|
| 205 |
+
default="train",
|
| 206 |
+
metadata={
|
| 207 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
| 208 |
+
},
|
| 209 |
+
)
|
| 210 |
+
eval_split_name: str = field(
|
| 211 |
+
default="validation",
|
| 212 |
+
metadata={
|
| 213 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
|
| 214 |
+
},
|
| 215 |
+
)
|
| 216 |
+
test_split_name: str = field(
|
| 217 |
+
default="test",
|
| 218 |
+
metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"},
|
| 219 |
+
)
|
| 220 |
+
wandb_project: str = field(
|
| 221 |
+
default="speech-recognition-whisper",
|
| 222 |
+
metadata={"help": "The name of the wandb project."},
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def write_wandb_pred(pred_str, label_str, prefix="eval"):
|
| 227 |
+
# convert str data to a wandb compatible format
|
| 228 |
+
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))]
|
| 229 |
+
# we'll log all predictions for the last epoch
|
| 230 |
+
wandb.log(
|
| 231 |
+
{
|
| 232 |
+
f"{prefix}/predictions": wandb.Table(
|
| 233 |
+
columns=["label_str", "pred_str"], data=str_data
|
| 234 |
+
)
|
| 235 |
+
},
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def to_pad_to_mel(array):
|
| 240 |
+
"""Static function which:
|
| 241 |
+
1. Pads/trims a list of audio arrays to a max length of 30s
|
| 242 |
+
2. Computes log-mel filter coefficients from padded/trimmed audio sequences
|
| 243 |
+
Inputs:
|
| 244 |
+
array: list of audio arrays
|
| 245 |
+
Returns:
|
| 246 |
+
input_ids: torch.tensor of log-mel filter bank coefficients
|
| 247 |
+
"""
|
| 248 |
+
padded_input = whisper.pad_or_trim(np.asarray(array, dtype=np.float32))
|
| 249 |
+
input_ids = whisper.log_mel_spectrogram(padded_input)
|
| 250 |
+
return input_ids
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def to_mel_to_pad(array):
|
| 254 |
+
"""Static function which:
|
| 255 |
+
1. Computes log-mel filter coefficients from padded/trimmed audio sequences
|
| 256 |
+
2. Pads/trims a list of audio arrays to a max length of 30s
|
| 257 |
+
Inputs:
|
| 258 |
+
array: list of audio arrays
|
| 259 |
+
Returns:
|
| 260 |
+
input_ids: torch.tensor of log-mel filter bank coefficients
|
| 261 |
+
"""
|
| 262 |
+
mels = whisper.log_mel_spectrogram(np.asarray(array, dtype=np.float32))
|
| 263 |
+
input_ids = whisper.pad_or_trim(mels, 3000)
|
| 264 |
+
return input_ids
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
@dataclass
|
| 268 |
+
class WhisperDataCollatorWithPadding:
|
| 269 |
+
"""
|
| 270 |
+
Data collator that dynamically pads the audio inputs received. An EOS token is appended to the labels sequences.
|
| 271 |
+
They are then dynamically padded to max length.
|
| 272 |
+
Args:
|
| 273 |
+
eos_token_id (`int`)
|
| 274 |
+
The end-of-sentence token for the Whisper tokenizer. Ensure to set for sequences to terminate before
|
| 275 |
+
generation max length.
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
eos_token_id: int
|
| 279 |
+
|
| 280 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
| 281 |
+
"""
|
| 282 |
+
Since Whisper models don't have a HF processor defined (feature extractor + tokenizer), we'll pad by hand...
|
| 283 |
+
"""
|
| 284 |
+
# split inputs and labels since they have to be of different lengths
|
| 285 |
+
# and need different padding methods
|
| 286 |
+
input_ids = [feature["input_ids"] for feature in features]
|
| 287 |
+
labels = [feature["labels"] for feature in features]
|
| 288 |
+
|
| 289 |
+
# first, pad the audio inputs to max_len
|
| 290 |
+
input_ids = torch.concat([to_pad_to_mel(input_val)[None, :] for input_val in input_ids])
|
| 291 |
+
|
| 292 |
+
# next, append the eos token to our sequence of labels
|
| 293 |
+
labels = [lab + [self.eos_token_id] for lab in labels]
|
| 294 |
+
# finally, pad the target labels to max_len
|
| 295 |
+
label_lengths = [len(lab) for lab in labels]
|
| 296 |
+
max_label_len = max(label_lengths)
|
| 297 |
+
labels = [np.pad(lab, (0, max_label_len - lab_len), 'constant', constant_values=-100) for lab, lab_len in zip(labels, label_lengths)]
|
| 298 |
+
|
| 299 |
+
batch = {"labels": labels}
|
| 300 |
+
batch = {k: torch.tensor(np.array(v), requires_grad=False) for k, v in batch.items()}
|
| 301 |
+
|
| 302 |
+
batch["input_ids"] = input_ids
|
| 303 |
+
|
| 304 |
+
return batch
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def main():
|
| 308 |
+
# See all possible arguments in src/transformers/training_args.py
|
| 309 |
+
# or by passing the --help flag to this script.
|
| 310 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 311 |
+
|
| 312 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
| 313 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 314 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 315 |
+
# let's parse it to get our arguments.
|
| 316 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
| 317 |
+
else:
|
| 318 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 319 |
+
|
| 320 |
+
# Set wandb project ID before instantiating the Trainer
|
| 321 |
+
os.environ["WANDB_PROJECT"] = data_args.wandb_project
|
| 322 |
+
report_to_wandb = "wandb" in training_args.report_to
|
| 323 |
+
|
| 324 |
+
sample_rate = 16_000
|
| 325 |
+
|
| 326 |
+
# Detecting last checkpoint.
|
| 327 |
+
last_checkpoint = None
|
| 328 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
| 329 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
| 330 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
| 331 |
+
raise ValueError(
|
| 332 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
| 333 |
+
"Use --overwrite_output_dir to overcome."
|
| 334 |
+
)
|
| 335 |
+
elif last_checkpoint is not None:
|
| 336 |
+
logger.info(
|
| 337 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
| 338 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
# Setup logging
|
| 342 |
+
logging.basicConfig(
|
| 343 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 344 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 345 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 346 |
+
)
|
| 347 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
| 348 |
+
|
| 349 |
+
# Log on each process the small summary:
|
| 350 |
+
logger.warning(
|
| 351 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 352 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 353 |
+
)
|
| 354 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 355 |
+
if is_main_process(training_args.local_rank):
|
| 356 |
+
transformers.utils.logging.set_verbosity_info()
|
| 357 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
| 358 |
+
|
| 359 |
+
# Set seed before initializing model.
|
| 360 |
+
set_seed(training_args.seed)
|
| 361 |
+
|
| 362 |
+
# load the model
|
| 363 |
+
if os.path.isfile(model_args.model_name_or_path):
|
| 364 |
+
checkpoint = torch.load(model_args.model_name_or_path)
|
| 365 |
+
need_to_rewrite_checkpoint = any(k.startswith("decoder.blocks") and ".mlp.3" in k for k in checkpoint.keys())
|
| 366 |
+
if need_to_rewrite_checkpoint:
|
| 367 |
+
new_checkpoint = {}
|
| 368 |
+
for k, v in checkpoint.items():
|
| 369 |
+
if k.startswith("decoder.blocks") and "mlp" in k.split("."):
|
| 370 |
+
if int(k.split(".mlp.")[-1].split(".")[0]) in [2, 4]:
|
| 371 |
+
continue
|
| 372 |
+
elif int(k.split(".mlp.")[-1].split(".")[0]) == 3:
|
| 373 |
+
k = k.replace(".mlp.3", ".mlp.2")
|
| 374 |
+
|
| 375 |
+
new_checkpoint[k] = v
|
| 376 |
+
|
| 377 |
+
with tempfile.TemporaryDirectory() as tmp:
|
| 378 |
+
file = os.path.join(tmp, "model.pt")
|
| 379 |
+
torch.save(new_checkpoint, file)
|
| 380 |
+
model = whisper.Whisper.load_trained(file)
|
| 381 |
+
else:
|
| 382 |
+
model = whisper.Whisper.load_trained(model_args.model_name_or_path)
|
| 383 |
+
del checkpoint
|
| 384 |
+
else:
|
| 385 |
+
model = whisper.load_model(model_args.model_name_or_path, dropout_rate=model_args.dropout_rate)
|
| 386 |
+
|
| 387 |
+
if training_args.do_train:
|
| 388 |
+
# set the dropout for the MLP layers -> we do this here as the MLP layers are written as a 'sequential'
|
| 389 |
+
# so changing the modelling code gives mis-matches in the state-dict
|
| 390 |
+
if not model_args.freeze_encoder:
|
| 391 |
+
# only apply dropout when training the encoder
|
| 392 |
+
for block_idx in range(len(model.encoder.blocks)):
|
| 393 |
+
mlp_layer = model.encoder.blocks[block_idx].mlp
|
| 394 |
+
# going very verbose to explain what we're doing here!
|
| 395 |
+
fc1 = mlp_layer[0]
|
| 396 |
+
act_fn = mlp_layer[1]
|
| 397 |
+
dropout = nn.Dropout(p=model_args.dropout_rate)
|
| 398 |
+
fc2 = mlp_layer[2]
|
| 399 |
+
model.encoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout, fc2, dropout)
|
| 400 |
+
|
| 401 |
+
for block_idx in range(len(model.decoder.blocks)):
|
| 402 |
+
mlp_layer = model.decoder.blocks[block_idx].mlp
|
| 403 |
+
fc1 = mlp_layer[0]
|
| 404 |
+
act_fn = mlp_layer[1]
|
| 405 |
+
dropout_1 = nn.Dropout(p=model_args.dropout_rate)
|
| 406 |
+
fc2 = mlp_layer[2]
|
| 407 |
+
dropout_2 = nn.Dropout(p=model_args.dropout_rate)
|
| 408 |
+
model.decoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout_1, fc2, dropout_2)
|
| 409 |
+
for block_idx in range(len(model.decoder.blocks)):
|
| 410 |
+
mlp_layer = model.decoder.blocks[block_idx].mlp
|
| 411 |
+
fc1 = mlp_layer[0]
|
| 412 |
+
act_fn = mlp_layer[1]
|
| 413 |
+
dropout1 = nn.Dropout(p=model_args.dropout_rate)
|
| 414 |
+
fc2 = mlp_layer[2]
|
| 415 |
+
dropout2 = nn.Dropout(p=model_args.dropout_rate)
|
| 416 |
+
model.decoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout1, fc2, dropout2)
|
| 417 |
+
|
| 418 |
+
# load the tokenizer
|
| 419 |
+
whisper_tok = whisper.tokenizer.get_tokenizer(False, task="transcribe", language="en")
|
| 420 |
+
tokenizer = whisper_tok.tokenizer
|
| 421 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 422 |
+
|
| 423 |
+
# 4. Load dataset
|
| 424 |
+
raw_datasets = DatasetDict()
|
| 425 |
+
|
| 426 |
+
if training_args.do_train:
|
| 427 |
+
raw_datasets["train"] = load_dataset(
|
| 428 |
+
data_args.dataset_name,
|
| 429 |
+
data_args.dataset_config_name,
|
| 430 |
+
split=data_args.train_split_name,
|
| 431 |
+
cache_dir=data_args.dataset_cache_dir,
|
| 432 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
if training_args.do_eval:
|
| 436 |
+
raw_datasets["eval"] = load_dataset(
|
| 437 |
+
data_args.dataset_name,
|
| 438 |
+
data_args.dataset_config_name,
|
| 439 |
+
split=data_args.eval_split_name,
|
| 440 |
+
cache_dir=data_args.dataset_cache_dir,
|
| 441 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
if training_args.do_predict:
|
| 445 |
+
test_split = data_args.test_split_name.split("+")
|
| 446 |
+
for split in test_split:
|
| 447 |
+
raw_datasets[split] = load_dataset(
|
| 448 |
+
data_args.dataset_name,
|
| 449 |
+
data_args.dataset_config_name,
|
| 450 |
+
split=split,
|
| 451 |
+
cache_dir=data_args.dataset_cache_dir,
|
| 452 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict:
|
| 456 |
+
raise ValueError(
|
| 457 |
+
"Cannot not train, not do evaluation and not do prediction. At least one of "
|
| 458 |
+
"training, evaluation or prediction has to be done."
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
# if not training, there is no need to run multiple epochs
|
| 462 |
+
if not training_args.do_train:
|
| 463 |
+
training_args.num_train_epochs = 1
|
| 464 |
+
|
| 465 |
+
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
|
| 466 |
+
raise ValueError(
|
| 467 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
| 468 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
| 469 |
+
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
|
| 473 |
+
raise ValueError(
|
| 474 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
| 475 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
| 476 |
+
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# 6. Resample speech dataset ALWAYS
|
| 480 |
+
raw_datasets = raw_datasets.cast_column(
|
| 481 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=sample_rate)
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
# 7. Preprocessing the datasets.
|
| 485 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
| 486 |
+
max_input_length = int(data_args.max_duration_in_seconds * sample_rate)
|
| 487 |
+
min_input_length = min(int(data_args.min_duration_in_seconds * sample_rate), 1)
|
| 488 |
+
max_eval_input_length = int(data_args.max_eval_duration_in_seconds * sample_rate) if data_args.max_eval_duration_in_seconds else None
|
| 489 |
+
max_target_length = data_args.max_target_length
|
| 490 |
+
min_target_length = data_args.min_target_length
|
| 491 |
+
audio_column_name = data_args.audio_column_name
|
| 492 |
+
num_workers = data_args.preprocessing_num_workers
|
| 493 |
+
text_column_name = data_args.text_column_name
|
| 494 |
+
|
| 495 |
+
if training_args.do_train and data_args.max_train_samples is not None:
|
| 496 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
| 497 |
+
|
| 498 |
+
if training_args.do_eval and data_args.max_eval_samples is not None:
|
| 499 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
| 500 |
+
|
| 501 |
+
if training_args.do_predict and data_args.max_predict_samples is not None:
|
| 502 |
+
for split in test_split:
|
| 503 |
+
raw_datasets[split] = raw_datasets[split].select(range(data_args.max_predict_samples))
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def prepare_dataset(batch):
|
| 507 |
+
# pre-process audio
|
| 508 |
+
sample = batch[audio_column_name]
|
| 509 |
+
|
| 510 |
+
# For training Whisper we perform the audio preprocessing in the WhisperDataCollator
|
| 511 |
+
# => we only need to supply it with the raw audio values
|
| 512 |
+
batch["input_ids"] = sample["array"]
|
| 513 |
+
batch["input_lengths"] = len(batch["input_ids"])
|
| 514 |
+
|
| 515 |
+
input_str = batch[text_column_name]
|
| 516 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
| 517 |
+
return batch
|
| 518 |
+
|
| 519 |
+
vectorized_datasets = raw_datasets.map(
|
| 520 |
+
prepare_dataset,
|
| 521 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
| 522 |
+
num_proc=num_workers,
|
| 523 |
+
desc="preprocess train dataset",
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
# filter training data with inputs longer than max_input_length
|
| 527 |
+
def is_audio_in_length_range(input_length):
|
| 528 |
+
return min_input_length < input_length < max_input_length
|
| 529 |
+
|
| 530 |
+
if training_args.do_train:
|
| 531 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
| 532 |
+
is_audio_in_length_range,
|
| 533 |
+
num_proc=num_workers,
|
| 534 |
+
input_columns=["input_lengths"],
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
if max_eval_input_length is not None:
|
| 538 |
+
# filter training data with inputs longer than max_input_length
|
| 539 |
+
def is_eval_audio_in_length_range(input_length):
|
| 540 |
+
return min_input_length < input_length < max_eval_input_length
|
| 541 |
+
|
| 542 |
+
if training_args.do_eval:
|
| 543 |
+
vectorized_datasets["eval"] = vectorized_datasets["eval"].filter(
|
| 544 |
+
is_eval_audio_in_length_range,
|
| 545 |
+
num_proc=num_workers,
|
| 546 |
+
input_columns=["input_lengths"],
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
if training_args.do_predict:
|
| 550 |
+
for split in test_split:
|
| 551 |
+
vectorized_datasets[split] = vectorized_datasets[split].filter(
|
| 552 |
+
is_eval_audio_in_length_range,
|
| 553 |
+
num_proc=num_workers,
|
| 554 |
+
input_columns=["input_lengths"],
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
# filter training data with targets shorter than min_target_length or longer than max_target_length
|
| 558 |
+
def is_labels_in_length_range(labels):
|
| 559 |
+
return min_target_length < len(labels) < max_target_length
|
| 560 |
+
|
| 561 |
+
if training_args.do_train:
|
| 562 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
| 563 |
+
is_labels_in_length_range,
|
| 564 |
+
num_proc=num_workers,
|
| 565 |
+
input_columns=["labels"],
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
# for large datasets it is advised to run the preprocessing on a
|
| 569 |
+
# single machine first with `args.preprocessing_only` since there will mostly likely
|
| 570 |
+
# be a timeout when running the script in distributed mode.
|
| 571 |
+
# In a second step `args.preprocessing_only` can then be set to `False` to load the
|
| 572 |
+
# cached dataset
|
| 573 |
+
if data_args.preprocessing_only:
|
| 574 |
+
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
| 575 |
+
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
| 576 |
+
return
|
| 577 |
+
|
| 578 |
+
if model_args.freeze_encoder:
|
| 579 |
+
model.freeze_encoder()
|
| 580 |
+
logging.info("Model encoder has been frozen")
|
| 581 |
+
|
| 582 |
+
# 8. Load Metric
|
| 583 |
+
metric_wer = datasets.load_metric("wer")
|
| 584 |
+
metric_cer = datasets.load_metric("cer")
|
| 585 |
+
|
| 586 |
+
def compute_metrics(pred):
|
| 587 |
+
pred_ids = pred.predictions
|
| 588 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.eos_token_id
|
| 589 |
+
|
| 590 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
| 591 |
+
pred_str = [x.lstrip().strip() for x in pred_str]
|
| 592 |
+
|
| 593 |
+
# we do not want to group tokens when computing the metrics
|
| 594 |
+
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
| 595 |
+
|
| 596 |
+
wer = metric_wer.compute(predictions=pred_str, references=label_str)
|
| 597 |
+
cer = metric_cer.compute(predictions=pred_str, references=label_str)
|
| 598 |
+
|
| 599 |
+
return {"wer": wer, "cer": cer}
|
| 600 |
+
|
| 601 |
+
def compute_metrics_and_predictions(pred):
|
| 602 |
+
pred_ids = pred.predictions
|
| 603 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.eos_token_id
|
| 604 |
+
|
| 605 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
| 606 |
+
pred_str = [x.lstrip().strip() for x in pred_str]
|
| 607 |
+
|
| 608 |
+
# we do not want to group tokens when computing the metrics
|
| 609 |
+
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
| 610 |
+
|
| 611 |
+
wer = metric_wer.compute(predictions=pred_str, references=label_str)
|
| 612 |
+
cer = metric_cer.compute(predictions=pred_str, references=label_str)
|
| 613 |
+
|
| 614 |
+
return {"wer": wer, "cer": cer, "pred_str": pred_str, "label_str": label_str}
|
| 615 |
+
|
| 616 |
+
class WhisperTrainer(Seq2SeqTrainer):
|
| 617 |
+
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
| 618 |
+
# If we are executing this function, we are the process zero, so we don't check for that.
|
| 619 |
+
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
| 620 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 621 |
+
logger.info(f"Saving model checkpoint to {output_dir}")
|
| 622 |
+
# Save a trained model and configuration using `save_pretrained()`.
|
| 623 |
+
# They can then be reloaded using `from_pretrained()`
|
| 624 |
+
self.model.save_to(save_path=os.path.join(output_dir, model_args.model_name_or_path + ".whisper"))
|
| 625 |
+
# Good practice: save your training arguments together with the trained model
|
| 626 |
+
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
|
| 627 |
+
|
| 628 |
+
# Define data collator
|
| 629 |
+
whisper_data_collator = WhisperDataCollatorWithPadding(eos_token_id=tokenizer.eos_token_id)
|
| 630 |
+
|
| 631 |
+
# make sure model uses 50257 as BOS
|
| 632 |
+
bos = tokenizer("<|startoftranscript|>").input_ids[0]
|
| 633 |
+
model.config.decoder_start_token_id = bos
|
| 634 |
+
|
| 635 |
+
# Initialize Trainer
|
| 636 |
+
trainer = WhisperTrainer(
|
| 637 |
+
model=model,
|
| 638 |
+
args=training_args,
|
| 639 |
+
compute_metrics=compute_metrics,
|
| 640 |
+
train_dataset=vectorized_datasets['train'] if training_args.do_train else None,
|
| 641 |
+
eval_dataset=vectorized_datasets['eval'] if training_args.do_eval else None,
|
| 642 |
+
data_collator=whisper_data_collator,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
# 8. Finally, we can start training
|
| 646 |
+
|
| 647 |
+
# Training
|
| 648 |
+
if training_args.do_train:
|
| 649 |
+
|
| 650 |
+
# use last checkpoint if exist
|
| 651 |
+
if last_checkpoint is not None:
|
| 652 |
+
checkpoint = last_checkpoint
|
| 653 |
+
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
|
| 654 |
+
checkpoint = model_args.model_name_or_path
|
| 655 |
+
else:
|
| 656 |
+
checkpoint = None
|
| 657 |
+
|
| 658 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
| 659 |
+
trainer.save_model()
|
| 660 |
+
|
| 661 |
+
metrics = train_result.metrics
|
| 662 |
+
max_train_samples = (
|
| 663 |
+
data_args.max_train_samples
|
| 664 |
+
if data_args.max_train_samples is not None
|
| 665 |
+
else len(vectorized_datasets["train"])
|
| 666 |
+
)
|
| 667 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
| 668 |
+
|
| 669 |
+
trainer.log_metrics("train", metrics)
|
| 670 |
+
trainer.save_metrics("train", metrics)
|
| 671 |
+
trainer.save_state()
|
| 672 |
+
|
| 673 |
+
# Change decoding strategy for final eval/predict
|
| 674 |
+
# if training_args.do_eval or training_args.do_predict:
|
| 675 |
+
# trainer.model.num_beams = 2
|
| 676 |
+
|
| 677 |
+
trainer.compute_metrics = compute_metrics_and_predictions
|
| 678 |
+
|
| 679 |
+
results = {}
|
| 680 |
+
if training_args.do_eval:
|
| 681 |
+
if not training_args.do_train and report_to_wandb:
|
| 682 |
+
# manually init wandb
|
| 683 |
+
wandb.init(project=data_args.wandb_project, name=training_args.run_name)
|
| 684 |
+
# Have to run this as a predict step, otherwise trainer will try to log the pred/label strings to wandb
|
| 685 |
+
eval_results = trainer.predict(vectorized_datasets["eval"], metric_key_prefix="eval", num_beams=model_args.num_beams, length_penalty=model_args.length_penalty)
|
| 686 |
+
metrics = eval_results.metrics
|
| 687 |
+
max_eval_samples = (
|
| 688 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
| 689 |
+
)
|
| 690 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
| 691 |
+
pred_str = metrics.pop("eval_pred_str", None)
|
| 692 |
+
label_str = metrics.pop("eval_label_str", None)
|
| 693 |
+
|
| 694 |
+
trainer.log_metrics("eval", metrics)
|
| 695 |
+
trainer.save_metrics("eval", metrics)
|
| 696 |
+
|
| 697 |
+
if report_to_wandb:
|
| 698 |
+
metrics = {os.path.join("eval", k[len("eval") + 1:]): v for k, v in metrics.items()}
|
| 699 |
+
wandb.log(metrics)
|
| 700 |
+
write_wandb_pred(pred_str, label_str, prefix="eval")
|
| 701 |
+
|
| 702 |
+
if training_args.do_predict:
|
| 703 |
+
if not training_args.do_train and not training_args.do_eval and report_to_wandb:
|
| 704 |
+
# manually init wandb
|
| 705 |
+
wandb.init(project=data_args.wandb_project, name=training_args.run_name)
|
| 706 |
+
for split in test_split:
|
| 707 |
+
predict_results = trainer.predict(
|
| 708 |
+
vectorized_datasets[split], metric_key_prefix=split, num_beams=model_args.num_beams, length_penalty=model_args.length_penalty)
|
| 709 |
+
metrics = predict_results.metrics
|
| 710 |
+
max_predict_samples = (
|
| 711 |
+
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(vectorized_datasets[split])
|
| 712 |
+
)
|
| 713 |
+
metrics[f"{split}_samples"] = min(max_predict_samples, len(vectorized_datasets[split]))
|
| 714 |
+
pred_str = metrics.pop(f"{split}_pred_str", None)
|
| 715 |
+
label_str = metrics.pop(f"{split}_label_str", None)
|
| 716 |
+
|
| 717 |
+
trainer.log_metrics(split, metrics)
|
| 718 |
+
trainer.save_metrics(split, metrics)
|
| 719 |
+
|
| 720 |
+
if report_to_wandb:
|
| 721 |
+
metrics = {os.path.join(split, k[len(split)+1:]): v for k, v in metrics.items()}
|
| 722 |
+
wandb.log(metrics)
|
| 723 |
+
write_wandb_pred(pred_str, label_str, prefix=split)
|
| 724 |
+
|
| 725 |
+
# Write model card and (optionally) push to hub
|
| 726 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
| 727 |
+
kwargs = {
|
| 728 |
+
"finetuned_from": model_args.model_name_or_path,
|
| 729 |
+
"tasks": "speech-recognition",
|
| 730 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
| 731 |
+
"dataset_args": (
|
| 732 |
+
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
|
| 733 |
+
f" {data_args.eval_split_name}"
|
| 734 |
+
),
|
| 735 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
| 736 |
+
}
|
| 737 |
+
if "common_voice" in data_args.dataset_name:
|
| 738 |
+
kwargs["language"] = config_name
|
| 739 |
+
|
| 740 |
+
if training_args.push_to_hub:
|
| 741 |
+
trainer.push_to_hub(**kwargs)
|
| 742 |
+
|
| 743 |
+
return results
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
if __name__ == "__main__":
|
| 747 |
+
main()
|
run_switchboard.sh
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
|
| 3 |
+
--model_name_or_path="medium.en" \
|
| 4 |
+
--dataset_name="esc/esc-datasets" \
|
| 5 |
+
--dataset_config_name="switchboard" \
|
| 6 |
+
--max_steps="5000" \
|
| 7 |
+
--output_dir="./" \
|
| 8 |
+
--run_name="whisper-switchboard" \
|
| 9 |
+
--max_steps="5000" \
|
| 10 |
+
--output_dir="./" \
|
| 11 |
+
--run_name="whisper-switchboard" \
|
| 12 |
+
--wandb_project="whisper" \
|
| 13 |
+
--per_device_train_batch_size="64" \
|
| 14 |
+
--per_device_eval_batch_size="16" \
|
| 15 |
+
--logging_steps="25" \
|
| 16 |
+
--learning_rate="1e-4" \
|
| 17 |
+
--warmup_steps="500" \
|
| 18 |
+
--report_to="wandb" \
|
| 19 |
+
--preprocessing_num_workers="16" \
|
| 20 |
+
--evaluation_strategy="steps" \
|
| 21 |
+
--eval_steps="1000" \
|
| 22 |
+
--save_strategy="steps" \
|
| 23 |
+
--save_steps="1000" \
|
| 24 |
+
--generation_max_length="224" \
|
| 25 |
+
--length_column_name="input_lengths" \
|
| 26 |
+
--gradient_checkpointing \
|
| 27 |
+
--group_by_length \
|
| 28 |
+
--freeze_encoder \
|
| 29 |
+
--fp16 \
|
| 30 |
+
--overwrite_output_dir \
|
| 31 |
+
--do_train \
|
| 32 |
+
--do_eval \
|
| 33 |
+
--do_predict \
|
| 34 |
+
--predict_with_generate \
|
| 35 |
+
--use_auth_token
|