---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 75d08bc7-3b0c-456d-b472-481534c3e08a
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: qlora
auto_resume_from_checkpoints: true
base_model: Qwen/Qwen2.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e1d136a86ab06d08_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e1d136a86ab06d08_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: responses
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/75d08bc7-3b0c-456d-b472-481534c3e08a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/e1d136a86ab06d08_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 256
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0005
wandb_entity: null
wandb_mode: online
wandb_name: c4fbd050-0dc5-4c85-b766-2c4450377849
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c4fbd050-0dc5-4c85-b766-2c4450377849
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
```
# 75d08bc7-3b0c-456d-b472-481534c3e08a
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.2021 | 0.0000 | 1 | 4.0772 |
| 0.2771 | 0.0015 | 100 | 0.3401 |
| 0.2088 | 0.0030 | 200 | 0.2947 |
| 0.593 | 0.0044 | 300 | 0.7117 |
| 0.2644 | 0.0059 | 400 | 0.3347 |
| 0.3288 | 0.0074 | 500 | 0.2273 |
| 0.3228 | 0.0089 | 600 | 0.2914 |
| 0.082 | 0.0103 | 700 | 0.3419 |
| 0.6424 | 0.0118 | 800 | 0.3045 |
| 0.2561 | 0.0133 | 900 | 0.3000 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1