--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - __main__ metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: - task: name: Token Classification type: token-classification dataset: name: __main__ type: __main__ config: local split: test args: local metrics: - name: Precision type: precision value: 0.5687651985949743 - name: Recall type: recall value: 0.6082935991908683 - name: F1 type: f1 value: 0.5878656705997346 - name: Accuracy type: accuracy value: 0.7791311866764413 --- # ner_model This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the __main__ dataset. It achieves the following results on the evaluation set: - Loss: 0.6378 - Precision: 0.5688 - Recall: 0.6083 - F1: 0.5879 - Accuracy: 0.7791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6703 | 1.0 | 5737 | 0.6732 | 0.5189 | 0.5700 | 0.5432 | 0.7605 | | 0.5251 | 2.0 | 11474 | 0.6378 | 0.5688 | 0.6083 | 0.5879 | 0.7791 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.0