--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - __main__ metrics: - precision - recall - f1 - accuracy model-index: - name: absa_model_v1 results: - task: name: Token Classification type: token-classification dataset: name: __main__ type: __main__ config: local split: test args: local metrics: - name: Precision type: precision value: 0.4978690430065866 - name: Recall type: recall value: 0.5325321176958143 - name: F1 type: f1 value: 0.514617541049259 - name: Accuracy type: accuracy value: 0.7477374784110535 --- # absa_model_v1 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the __main__ dataset. It achieves the following results on the evaluation set: - Loss: 0.7541 - Precision: 0.4979 - Recall: 0.5325 - F1: 0.5146 - Accuracy: 0.7477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7317 | 1.0 | 5905 | 0.7541 | 0.4979 | 0.5325 | 0.5146 | 0.7477 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.0