Commit
·
075c00d
0
Parent(s):
Initial commit for ner-stacked-bert-multilingual
Browse files- .gitattributes +35 -0
- generic_ner.py +791 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
generic_ner.py
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from transformers import Pipeline
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import nltk
|
6 |
+
|
7 |
+
# new test
|
8 |
+
nltk.download("averaged_perceptron_tagger")
|
9 |
+
nltk.download("averaged_perceptron_tagger_eng")
|
10 |
+
nltk.download("stopwords")
|
11 |
+
from nltk.chunk import conlltags2tree
|
12 |
+
from nltk import pos_tag
|
13 |
+
from nltk.tree import Tree
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import re, string
|
16 |
+
|
17 |
+
stop_words = set(nltk.corpus.stopwords.words("english"))
|
18 |
+
DEBUG = False
|
19 |
+
punctuation = (
|
20 |
+
string.punctuation
|
21 |
+
+ "«»—…“”"
|
22 |
+
+ "—."
|
23 |
+
+ "–"
|
24 |
+
+ "’"
|
25 |
+
+ "‘"
|
26 |
+
+ "´"
|
27 |
+
+ "•"
|
28 |
+
+ "°"
|
29 |
+
+ "»"
|
30 |
+
+ "“"
|
31 |
+
+ "”"
|
32 |
+
+ "–"
|
33 |
+
+ "—"
|
34 |
+
+ "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
|
35 |
+
)
|
36 |
+
|
37 |
+
# List of additional "strange" punctuation marks
|
38 |
+
# additional_punctuation = "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
|
39 |
+
|
40 |
+
|
41 |
+
WHITESPACE_RULES = {
|
42 |
+
"fr": {
|
43 |
+
"pct_no_ws_before": [".", ",", ")", "]", "}", "°", "...", ".-", "%"],
|
44 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
45 |
+
"pct_no_ws_before_after": ["'", "-"],
|
46 |
+
"pct_number": [".", ","],
|
47 |
+
},
|
48 |
+
"de": {
|
49 |
+
"pct_no_ws_before": [
|
50 |
+
".",
|
51 |
+
",",
|
52 |
+
")",
|
53 |
+
"]",
|
54 |
+
"}",
|
55 |
+
"°",
|
56 |
+
"...",
|
57 |
+
"?",
|
58 |
+
"!",
|
59 |
+
":",
|
60 |
+
";",
|
61 |
+
".-",
|
62 |
+
"%",
|
63 |
+
],
|
64 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
65 |
+
"pct_no_ws_before_after": ["'", "-"],
|
66 |
+
"pct_number": [".", ","],
|
67 |
+
},
|
68 |
+
"other": {
|
69 |
+
"pct_no_ws_before": [
|
70 |
+
".",
|
71 |
+
",",
|
72 |
+
")",
|
73 |
+
"]",
|
74 |
+
"}",
|
75 |
+
"°",
|
76 |
+
"...",
|
77 |
+
"?",
|
78 |
+
"!",
|
79 |
+
":",
|
80 |
+
";",
|
81 |
+
".-",
|
82 |
+
"%",
|
83 |
+
],
|
84 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
85 |
+
"pct_no_ws_before_after": ["'", "-"],
|
86 |
+
"pct_number": [".", ","],
|
87 |
+
},
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
def tokenize(text: str, language: str = "other") -> list[str]:
|
92 |
+
"""Apply whitespace rules to the given text and language, separating it into tokens.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
text (str): The input text to separate into a list of tokens.
|
96 |
+
language (str): Language of the text.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
list[str]: List of tokens with punctuation as separate tokens.
|
100 |
+
"""
|
101 |
+
# text = add_spaces_around_punctuation(text)
|
102 |
+
if not text:
|
103 |
+
return []
|
104 |
+
|
105 |
+
if language not in WHITESPACE_RULES:
|
106 |
+
# Default behavior for languages without specific rules:
|
107 |
+
# tokenize using standard whitespace splitting
|
108 |
+
language = "other"
|
109 |
+
|
110 |
+
wsrules = WHITESPACE_RULES[language]
|
111 |
+
tokenized_text = []
|
112 |
+
current_token = ""
|
113 |
+
|
114 |
+
for char in text:
|
115 |
+
if char in wsrules["pct_no_ws_before_after"]:
|
116 |
+
if current_token:
|
117 |
+
tokenized_text.append(current_token)
|
118 |
+
tokenized_text.append(char)
|
119 |
+
current_token = ""
|
120 |
+
elif char in wsrules["pct_no_ws_before"] or char in wsrules["pct_no_ws_after"]:
|
121 |
+
if current_token:
|
122 |
+
tokenized_text.append(current_token)
|
123 |
+
tokenized_text.append(char)
|
124 |
+
current_token = ""
|
125 |
+
elif char.isspace():
|
126 |
+
if current_token:
|
127 |
+
tokenized_text.append(current_token)
|
128 |
+
current_token = ""
|
129 |
+
else:
|
130 |
+
current_token += char
|
131 |
+
|
132 |
+
if current_token:
|
133 |
+
tokenized_text.append(current_token)
|
134 |
+
|
135 |
+
return tokenized_text
|
136 |
+
|
137 |
+
|
138 |
+
def normalize_text(text):
|
139 |
+
# Remove spaces and tabs for the search but keep newline characters
|
140 |
+
return re.sub(r"[ \t]+", "", text)
|
141 |
+
|
142 |
+
|
143 |
+
def find_entity_indices(article_text, search_text):
|
144 |
+
# Normalize texts by removing spaces and tabs
|
145 |
+
normalized_article = normalize_text(article_text)
|
146 |
+
normalized_search = normalize_text(search_text)
|
147 |
+
|
148 |
+
# Initialize a list to hold all start and end indices
|
149 |
+
indices = []
|
150 |
+
|
151 |
+
# Find all occurrences of the search text in the normalized article text
|
152 |
+
start_index = 0
|
153 |
+
while True:
|
154 |
+
start_index = normalized_article.find(normalized_search, start_index)
|
155 |
+
if start_index == -1:
|
156 |
+
break
|
157 |
+
|
158 |
+
# Calculate the actual start and end indices in the original article text
|
159 |
+
original_chars = 0
|
160 |
+
original_start_index = 0
|
161 |
+
for i in range(start_index):
|
162 |
+
while article_text[original_start_index] in (" ", "\t"):
|
163 |
+
original_start_index += 1
|
164 |
+
if article_text[original_start_index] not in (" ", "\t", "\n"):
|
165 |
+
original_chars += 1
|
166 |
+
original_start_index += 1
|
167 |
+
|
168 |
+
original_end_index = original_start_index
|
169 |
+
search_chars = 0
|
170 |
+
while search_chars < len(normalized_search):
|
171 |
+
if article_text[original_end_index] not in (" ", "\t", "\n"):
|
172 |
+
search_chars += 1
|
173 |
+
original_end_index += 1 # Increment to include the last character
|
174 |
+
|
175 |
+
# Append the found indices to the list
|
176 |
+
if article_text[original_start_index] == " ":
|
177 |
+
original_start_index += 1
|
178 |
+
indices.append((original_start_index, original_end_index))
|
179 |
+
|
180 |
+
# Move start_index to the next position to continue searching
|
181 |
+
start_index += 1
|
182 |
+
|
183 |
+
return indices
|
184 |
+
|
185 |
+
|
186 |
+
def get_entities(tokens, tags, confidences, text):
|
187 |
+
|
188 |
+
tags = [tag.replace("S-", "B-").replace("E-", "I-") for tag in tags]
|
189 |
+
pos_tags = [pos for token, pos in pos_tag(tokens)]
|
190 |
+
|
191 |
+
for i in range(1, len(tags)):
|
192 |
+
# If a 'B-' tag is followed by another 'B-' without an 'O' in between, change the second to 'I-'
|
193 |
+
if tags[i].startswith("B-") and tags[i - 1].startswith("I-"):
|
194 |
+
tags[i] = "I-" + tags[i][2:] # Change 'B-' to 'I-' for the same entity type
|
195 |
+
|
196 |
+
conlltags = [(token, pos, tg) for token, pos, tg in zip(tokens, pos_tags, tags)]
|
197 |
+
ne_tree = conlltags2tree(conlltags)
|
198 |
+
|
199 |
+
entities = []
|
200 |
+
idx: int = 0
|
201 |
+
already_done = []
|
202 |
+
for subtree in ne_tree:
|
203 |
+
# skipping 'O' tags
|
204 |
+
if isinstance(subtree, Tree):
|
205 |
+
original_label = subtree.label()
|
206 |
+
original_string = " ".join([token for token, pos in subtree.leaves()])
|
207 |
+
|
208 |
+
for indices in find_entity_indices(text, original_string):
|
209 |
+
entity_start_position = indices[0]
|
210 |
+
entity_end_position = indices[1]
|
211 |
+
if (
|
212 |
+
"_".join(
|
213 |
+
[original_label, original_string, str(entity_start_position)]
|
214 |
+
)
|
215 |
+
in already_done
|
216 |
+
):
|
217 |
+
continue
|
218 |
+
else:
|
219 |
+
already_done.append(
|
220 |
+
"_".join(
|
221 |
+
[
|
222 |
+
original_label,
|
223 |
+
original_string,
|
224 |
+
str(entity_start_position),
|
225 |
+
]
|
226 |
+
)
|
227 |
+
)
|
228 |
+
if len(text[entity_start_position:entity_end_position].strip()) < len(
|
229 |
+
text[entity_start_position:entity_end_position]
|
230 |
+
):
|
231 |
+
entity_start_position = (
|
232 |
+
entity_start_position
|
233 |
+
+ len(text[entity_start_position:entity_end_position])
|
234 |
+
- len(text[entity_start_position:entity_end_position].strip())
|
235 |
+
)
|
236 |
+
|
237 |
+
entities.append(
|
238 |
+
{
|
239 |
+
"type": original_label,
|
240 |
+
"confidence_ner": round(
|
241 |
+
np.average(confidences[idx : idx + len(subtree)]) * 100, 2
|
242 |
+
),
|
243 |
+
"index": (idx, idx + len(subtree)),
|
244 |
+
"surface": text[
|
245 |
+
entity_start_position:entity_end_position
|
246 |
+
], # original_string,
|
247 |
+
"lOffset": entity_start_position,
|
248 |
+
"rOffset": entity_end_position,
|
249 |
+
}
|
250 |
+
)
|
251 |
+
|
252 |
+
idx += len(subtree)
|
253 |
+
|
254 |
+
# Update the current character position
|
255 |
+
# We add the length of the original string + 1 (for the space)
|
256 |
+
else:
|
257 |
+
token, pos = subtree
|
258 |
+
# If it's not a named entity, we still need to update the character
|
259 |
+
# position
|
260 |
+
idx += 1
|
261 |
+
|
262 |
+
return entities
|
263 |
+
|
264 |
+
|
265 |
+
def realign(
|
266 |
+
text_sentence, out_label_preds, softmax_scores, tokenizer, reverted_label_map
|
267 |
+
):
|
268 |
+
preds_list, words_list, confidence_list = [], [], []
|
269 |
+
word_ids = tokenizer(text_sentence, is_split_into_words=True).word_ids()
|
270 |
+
for idx, word in enumerate(text_sentence):
|
271 |
+
beginning_index = word_ids.index(idx)
|
272 |
+
try:
|
273 |
+
preds_list.append(reverted_label_map[out_label_preds[beginning_index]])
|
274 |
+
confidence_list.append(max(softmax_scores[beginning_index]))
|
275 |
+
except Exception as ex: # the sentence was longer then max_length
|
276 |
+
preds_list.append("O")
|
277 |
+
confidence_list.append(0.0)
|
278 |
+
words_list.append(word)
|
279 |
+
|
280 |
+
return words_list, preds_list, confidence_list
|
281 |
+
|
282 |
+
|
283 |
+
def add_spaces_around_punctuation(text):
|
284 |
+
# Add a space before and after all punctuation
|
285 |
+
all_punctuation = string.punctuation + punctuation
|
286 |
+
return re.sub(r"([{}])".format(re.escape(all_punctuation)), r" \1 ", text)
|
287 |
+
|
288 |
+
|
289 |
+
def attach_comp_to_closest(entities):
|
290 |
+
# Define valid entity types that can receive a "comp.function" or "comp.name" attachment
|
291 |
+
valid_entity_types = {"org", "pers", "org.ent", "pers.ind"}
|
292 |
+
|
293 |
+
# Separate "comp.function" and "comp.name" entities from other entities
|
294 |
+
comp_entities = [ent for ent in entities if ent["type"].startswith("comp")]
|
295 |
+
other_entities = [ent for ent in entities if not ent["type"].startswith("comp")]
|
296 |
+
|
297 |
+
for comp_entity in comp_entities:
|
298 |
+
closest_entity = None
|
299 |
+
min_distance = float("inf")
|
300 |
+
|
301 |
+
# Find the closest non-"comp" entity that is valid for attaching
|
302 |
+
for other_entity in other_entities:
|
303 |
+
# Calculate distance between the comp entity and the other entity
|
304 |
+
if comp_entity["lOffset"] > other_entity["rOffset"]:
|
305 |
+
distance = comp_entity["lOffset"] - other_entity["rOffset"]
|
306 |
+
elif comp_entity["rOffset"] < other_entity["lOffset"]:
|
307 |
+
distance = other_entity["lOffset"] - comp_entity["rOffset"]
|
308 |
+
else:
|
309 |
+
distance = 0 # They overlap or touch
|
310 |
+
|
311 |
+
# Ensure the entity type is valid and check for minimal distance
|
312 |
+
if (
|
313 |
+
distance < min_distance
|
314 |
+
and other_entity["type"].split(".")[0] in valid_entity_types
|
315 |
+
):
|
316 |
+
min_distance = distance
|
317 |
+
closest_entity = other_entity
|
318 |
+
|
319 |
+
# Attach the "comp.function" or "comp.name" if a valid entity is found
|
320 |
+
if closest_entity:
|
321 |
+
suffix = comp_entity["type"].split(".")[
|
322 |
+
-1
|
323 |
+
] # Extract the suffix (e.g., 'name', 'function')
|
324 |
+
closest_entity[suffix] = comp_entity["surface"] # Attach the text
|
325 |
+
|
326 |
+
return other_entities
|
327 |
+
|
328 |
+
|
329 |
+
def conflicting_context(comp_entity, target_entity):
|
330 |
+
"""
|
331 |
+
Determines if there is a conflict between the comp_entity and the target entity.
|
332 |
+
Prevents incorrect name and function attachments by using a rule-based approach.
|
333 |
+
"""
|
334 |
+
# Case 1: Check for correct function attachment to person or organization entities
|
335 |
+
if comp_entity["type"].startswith("comp.function"):
|
336 |
+
if not ("pers" in target_entity["type"] or "org" in target_entity["type"]):
|
337 |
+
return True # Conflict: Function should only attach to persons or organizations
|
338 |
+
|
339 |
+
# Case 2: Avoid attaching comp.* entities to non-person, non-organization types (like locations)
|
340 |
+
if "loc" in target_entity["type"]:
|
341 |
+
return True # Conflict: comp.* entities should not attach to locations or similar types
|
342 |
+
|
343 |
+
return False # No conflict
|
344 |
+
|
345 |
+
|
346 |
+
def extract_name_from_text(text, partial_name):
|
347 |
+
"""
|
348 |
+
Extracts the full name from the entity's text based on the partial name.
|
349 |
+
This function assumes that the full name starts with capitalized letters and does not
|
350 |
+
include any words that come after the partial name.
|
351 |
+
"""
|
352 |
+
# Split the text and partial name into words
|
353 |
+
words = tokenize(text)
|
354 |
+
partial_words = partial_name.split()
|
355 |
+
|
356 |
+
if DEBUG:
|
357 |
+
print("text:", text)
|
358 |
+
if DEBUG:
|
359 |
+
print("partial_name:", partial_name)
|
360 |
+
|
361 |
+
# Find the position of the partial name in the word list
|
362 |
+
for i, word in enumerate(words):
|
363 |
+
if DEBUG:
|
364 |
+
print(words, "---", words[i : i + len(partial_words)])
|
365 |
+
if words[i : i + len(partial_words)] == partial_words:
|
366 |
+
# Initialize full name with the partial name
|
367 |
+
full_name = partial_words[:]
|
368 |
+
|
369 |
+
if DEBUG:
|
370 |
+
print("full_name:", full_name)
|
371 |
+
|
372 |
+
# Check previous words and only add capitalized words (skip lowercase words)
|
373 |
+
j = i - 1
|
374 |
+
while j >= 0 and words[j][0].isupper():
|
375 |
+
full_name.insert(0, words[j])
|
376 |
+
j -= 1
|
377 |
+
if DEBUG:
|
378 |
+
print("full_name:", full_name)
|
379 |
+
|
380 |
+
# Return only the full name up to the partial name (ignore words after the name)
|
381 |
+
return " ".join(full_name).strip() # Join the words to form the full name
|
382 |
+
|
383 |
+
# If not found, return the original text (as a fallback)
|
384 |
+
return text.strip()
|
385 |
+
|
386 |
+
|
387 |
+
def repair_names_in_entities(entities):
|
388 |
+
"""
|
389 |
+
This function repairs the names in the entities by extracting the full name
|
390 |
+
from the text of the entity if a partial name (e.g., 'Washington') is incorrectly attached.
|
391 |
+
"""
|
392 |
+
for entity in entities:
|
393 |
+
if "name" in entity and "pers" in entity["type"]:
|
394 |
+
name = entity["name"]
|
395 |
+
text = entity["surface"]
|
396 |
+
|
397 |
+
# Check if the attached name is part of the entity's text
|
398 |
+
if name in text:
|
399 |
+
# Extract the full name from the text by splitting around the attached name
|
400 |
+
full_name = extract_name_from_text(entity["surface"], name)
|
401 |
+
entity["name"] = (
|
402 |
+
full_name # Replace the partial name with the full name
|
403 |
+
)
|
404 |
+
# if "name" not in entity:
|
405 |
+
# entity["name"] = entity["surface"]
|
406 |
+
|
407 |
+
return entities
|
408 |
+
|
409 |
+
|
410 |
+
def clean_coarse_entities(entities):
|
411 |
+
"""
|
412 |
+
This function removes entities that are not useful for the NEL process.
|
413 |
+
"""
|
414 |
+
# Define a set of entity types that are considered useful for NEL
|
415 |
+
useful_types = {
|
416 |
+
"pers", # Person
|
417 |
+
"loc", # Location
|
418 |
+
"org", # Organization
|
419 |
+
"date", # Product
|
420 |
+
"time", # Time
|
421 |
+
}
|
422 |
+
|
423 |
+
# Filter out entities that are not in the useful_types set unless they are comp.* entities
|
424 |
+
cleaned_entities = [
|
425 |
+
entity
|
426 |
+
for entity in entities
|
427 |
+
if entity["type"] in useful_types or "comp" in entity["type"]
|
428 |
+
]
|
429 |
+
|
430 |
+
return cleaned_entities
|
431 |
+
|
432 |
+
|
433 |
+
def postprocess_entities(entities):
|
434 |
+
# Step 1: Filter entities with the same text, keeping the one with the most dots in the 'entity' field
|
435 |
+
entity_map = {}
|
436 |
+
|
437 |
+
# Loop over the entities and prioritize the one with the most dots
|
438 |
+
for entity in entities:
|
439 |
+
entity_text = entity["surface"]
|
440 |
+
num_dots = entity["type"].count(".")
|
441 |
+
|
442 |
+
# If the entity text is new, or this entity has more dots, update the map
|
443 |
+
if (
|
444 |
+
entity_text not in entity_map
|
445 |
+
or entity_map[entity_text]["type"].count(".") < num_dots
|
446 |
+
):
|
447 |
+
entity_map[entity_text] = entity
|
448 |
+
|
449 |
+
# Collect the filtered entities from the map
|
450 |
+
filtered_entities = list(entity_map.values())
|
451 |
+
|
452 |
+
# Step 2: Attach "comp.function" entities to the closest other entities
|
453 |
+
filtered_entities = attach_comp_to_closest(filtered_entities)
|
454 |
+
if DEBUG:
|
455 |
+
print("After attach_comp_to_closest:", filtered_entities, "\n")
|
456 |
+
filtered_entities = repair_names_in_entities(filtered_entities)
|
457 |
+
if DEBUG:
|
458 |
+
print("After repair_names_in_entities:", filtered_entities, "\n")
|
459 |
+
|
460 |
+
# Step 3: Remove entities that are not useful for NEL
|
461 |
+
# filtered_entities = clean_coarse_entities(filtered_entities)
|
462 |
+
|
463 |
+
# filtered_entities = remove_blacklisted_entities(filtered_entities)
|
464 |
+
|
465 |
+
return filtered_entities
|
466 |
+
|
467 |
+
|
468 |
+
def remove_included_entities(entities):
|
469 |
+
# Loop through entities and remove those whose text is included in another with the same label
|
470 |
+
final_entities = []
|
471 |
+
for i, entity in enumerate(entities):
|
472 |
+
is_included = False
|
473 |
+
for other_entity in entities:
|
474 |
+
if entity["surface"] != other_entity["surface"]:
|
475 |
+
if "comp" in other_entity["type"]:
|
476 |
+
# Check if entity's text is a substring of another entity's text
|
477 |
+
if entity["surface"] in other_entity["surface"]:
|
478 |
+
is_included = True
|
479 |
+
break
|
480 |
+
elif (
|
481 |
+
entity["type"].split(".")[0] in other_entity["type"].split(".")[0]
|
482 |
+
or other_entity["type"].split(".")[0]
|
483 |
+
in entity["type"].split(".")[0]
|
484 |
+
):
|
485 |
+
if entity["surface"] in other_entity["surface"]:
|
486 |
+
is_included = True
|
487 |
+
if not is_included:
|
488 |
+
final_entities.append(entity)
|
489 |
+
return final_entities
|
490 |
+
|
491 |
+
|
492 |
+
def refine_entities_with_coarse(all_entities, coarse_entities):
|
493 |
+
"""
|
494 |
+
Looks through all entities and refines them based on the coarse entities.
|
495 |
+
If a surface match is found in the coarse entities and the types match,
|
496 |
+
the entity's confidence_ner and type are updated based on the coarse entity.
|
497 |
+
"""
|
498 |
+
# Create a dictionary for coarse entities based on surface and type for quick lookup
|
499 |
+
coarse_lookup = {}
|
500 |
+
for coarse_entity in coarse_entities:
|
501 |
+
key = (coarse_entity["surface"], coarse_entity["type"].split(".")[0])
|
502 |
+
coarse_lookup[key] = coarse_entity
|
503 |
+
|
504 |
+
# Iterate through all entities and compare with the coarse entities
|
505 |
+
for entity in all_entities:
|
506 |
+
key = (
|
507 |
+
entity["surface"],
|
508 |
+
entity["type"].split(".")[0],
|
509 |
+
) # Use the coarse type for comparison
|
510 |
+
|
511 |
+
if key in coarse_lookup:
|
512 |
+
coarse_entity = coarse_lookup[key]
|
513 |
+
# If a match is found, update the confidence_ner and type in the entity
|
514 |
+
if entity["confidence_ner"] < coarse_entity["confidence_ner"]:
|
515 |
+
entity["confidence_ner"] = coarse_entity["confidence_ner"]
|
516 |
+
entity["type"] = coarse_entity[
|
517 |
+
"type"
|
518 |
+
] # Update the type if the confidence is higher
|
519 |
+
|
520 |
+
# No need to append to refined_entities, we're modifying in place
|
521 |
+
for entity in all_entities:
|
522 |
+
entity["type"] = entity["type"].split(".")[0]
|
523 |
+
return all_entities
|
524 |
+
|
525 |
+
|
526 |
+
def remove_trailing_stopwords(entities):
|
527 |
+
"""
|
528 |
+
This function removes stopwords and punctuation from both the beginning and end of each entity's text
|
529 |
+
and repairs the lOffset and rOffset accordingly.
|
530 |
+
"""
|
531 |
+
if DEBUG:
|
532 |
+
print(f"Initial entities: {len(entities)}")
|
533 |
+
new_entities = []
|
534 |
+
for entity in entities:
|
535 |
+
if "comp" not in entity["type"]:
|
536 |
+
entity_text = entity["surface"]
|
537 |
+
original_len = len(entity_text)
|
538 |
+
|
539 |
+
# Initial offsets
|
540 |
+
lOffset = entity.get("lOffset", 0)
|
541 |
+
rOffset = entity.get("rOffset", original_len)
|
542 |
+
|
543 |
+
# Remove stopwords and punctuation from the beginning
|
544 |
+
i = 0
|
545 |
+
while entity_text and (
|
546 |
+
entity_text.split()[0].lower() in stop_words
|
547 |
+
or entity_text[0] in punctuation
|
548 |
+
):
|
549 |
+
if entity_text.split()[0].lower() in stop_words:
|
550 |
+
stopword_len = (
|
551 |
+
len(entity_text.split()[0]) + 1
|
552 |
+
) # Adjust length for stopword and following space
|
553 |
+
entity_text = entity_text[stopword_len:] # Remove leading stopword
|
554 |
+
lOffset += stopword_len # Adjust the left offset
|
555 |
+
if DEBUG:
|
556 |
+
print(
|
557 |
+
f"Removed leading stopword from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
|
558 |
+
)
|
559 |
+
elif entity_text[0] in punctuation:
|
560 |
+
entity_text = entity_text[1:] # Remove leading punctuation
|
561 |
+
lOffset += 1 # Adjust the left offset
|
562 |
+
if DEBUG:
|
563 |
+
print(
|
564 |
+
f"Removed leading punctuation from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
|
565 |
+
)
|
566 |
+
i += 1
|
567 |
+
|
568 |
+
i = 0
|
569 |
+
# Remove stopwords and punctuation from the end
|
570 |
+
iteration = 0
|
571 |
+
max_iterations = len(entity_text) # Prevent infinite loops
|
572 |
+
|
573 |
+
while entity_text and iteration < max_iterations:
|
574 |
+
# Check if the last word is a stopword or the last character is punctuation
|
575 |
+
last_word = entity_text.split()[-1] if entity_text.split() else ""
|
576 |
+
last_char = entity_text[-1]
|
577 |
+
|
578 |
+
if last_word.lower() in stop_words:
|
579 |
+
# Remove trailing stopword and adjust rOffset
|
580 |
+
stopword_len = len(last_word) + 1 # Include space before stopword
|
581 |
+
entity_text = entity_text[:-stopword_len].rstrip()
|
582 |
+
rOffset -= stopword_len
|
583 |
+
if DEBUG:
|
584 |
+
print(
|
585 |
+
f"Removed trailing stopword from entity: {entity_text} (rOffset={rOffset})"
|
586 |
+
)
|
587 |
+
|
588 |
+
elif last_char in punctuation:
|
589 |
+
# Remove trailing punctuation and adjust rOffset
|
590 |
+
entity_text = entity_text[:-1].rstrip()
|
591 |
+
rOffset -= 1
|
592 |
+
if DEBUG:
|
593 |
+
print(
|
594 |
+
f"Removed trailing punctuation from entity: {entity_text} (rOffset={rOffset})"
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
# Exit loop if neither stopwords nor punctuation are found
|
598 |
+
break
|
599 |
+
|
600 |
+
iteration += 1
|
601 |
+
# print(f"ITERATION: {iteration} [{entity['surface']}] for {entity_text}")
|
602 |
+
|
603 |
+
if len(entity_text.strip()) == 1:
|
604 |
+
entities.remove(entity)
|
605 |
+
if DEBUG:
|
606 |
+
print(f"Skipping entity: {entity_text}")
|
607 |
+
continue
|
608 |
+
# Skip certain entities based on rules
|
609 |
+
if entity_text in string.punctuation:
|
610 |
+
if DEBUG:
|
611 |
+
print(f"Skipping entity: {entity_text}")
|
612 |
+
entities.remove(entity)
|
613 |
+
continue
|
614 |
+
# check now if its in stopwords
|
615 |
+
if entity_text.lower() in stop_words:
|
616 |
+
if DEBUG:
|
617 |
+
print(f"Skipping entity: {entity_text}")
|
618 |
+
entities.remove(entity)
|
619 |
+
continue
|
620 |
+
# check now if the entire entity is a list of stopwords:
|
621 |
+
if all([word.lower() in stop_words for word in entity_text.split()]):
|
622 |
+
if DEBUG:
|
623 |
+
print(f"Skipping entity: {entity_text}")
|
624 |
+
entities.remove(entity)
|
625 |
+
continue
|
626 |
+
# Check if the entire entity is made up of stopwords characters
|
627 |
+
if all(
|
628 |
+
[char.lower() in stop_words for char in entity_text if char.isalpha()]
|
629 |
+
):
|
630 |
+
if DEBUG:
|
631 |
+
print(
|
632 |
+
f"Skipping entity: {entity_text} (all characters are stopwords)"
|
633 |
+
)
|
634 |
+
entities.remove(entity)
|
635 |
+
continue
|
636 |
+
# check now if all entity is in a list of punctuation
|
637 |
+
if all([word in string.punctuation for word in entity_text.split()]):
|
638 |
+
if DEBUG:
|
639 |
+
print(
|
640 |
+
f"Skipping entity: {entity_text} (all characters are punctuation)"
|
641 |
+
)
|
642 |
+
entities.remove(entity)
|
643 |
+
continue
|
644 |
+
if all(
|
645 |
+
[
|
646 |
+
char.lower() in string.punctuation
|
647 |
+
for char in entity_text
|
648 |
+
if char.isalpha()
|
649 |
+
]
|
650 |
+
):
|
651 |
+
if DEBUG:
|
652 |
+
print(
|
653 |
+
f"Skipping entity: {entity_text} (all characters are punctuation)"
|
654 |
+
)
|
655 |
+
entities.remove(entity)
|
656 |
+
continue
|
657 |
+
|
658 |
+
# if it's a number and "time" no in it, then continue
|
659 |
+
if entity_text.isdigit() and "time" not in entity["type"]:
|
660 |
+
if DEBUG:
|
661 |
+
print(f"Skipping entity: {entity_text}")
|
662 |
+
entities.remove(entity)
|
663 |
+
continue
|
664 |
+
|
665 |
+
if entity_text.startswith(" "):
|
666 |
+
entity_text = entity_text[1:]
|
667 |
+
# update lOffset, rOffset
|
668 |
+
lOffset += 1
|
669 |
+
if entity_text.endswith(" "):
|
670 |
+
entity_text = entity_text[:-1]
|
671 |
+
# update lOffset, rOffset
|
672 |
+
rOffset -= 1
|
673 |
+
|
674 |
+
# Update the entity surface and offsets
|
675 |
+
entity["surface"] = entity_text
|
676 |
+
entity["lOffset"] = lOffset
|
677 |
+
entity["rOffset"] = rOffset
|
678 |
+
|
679 |
+
# Remove the entity if the surface is empty after cleaning
|
680 |
+
if len(entity["surface"].strip()) == 0:
|
681 |
+
if DEBUG:
|
682 |
+
print(f"Deleted entity: {entity['surface']}")
|
683 |
+
entities.remove(entity)
|
684 |
+
else:
|
685 |
+
new_entities.append(entity)
|
686 |
+
|
687 |
+
if DEBUG:
|
688 |
+
print(f"Remained entities: {len(new_entities)}")
|
689 |
+
return new_entities
|
690 |
+
|
691 |
+
|
692 |
+
class MultitaskTokenClassificationPipeline(Pipeline):
|
693 |
+
|
694 |
+
def _sanitize_parameters(self, **kwargs):
|
695 |
+
preprocess_kwargs = {}
|
696 |
+
if "text" in kwargs:
|
697 |
+
preprocess_kwargs["text"] = kwargs["text"]
|
698 |
+
self.label_map = self.model.config.label_map
|
699 |
+
self.id2label = {
|
700 |
+
task: {id_: label for label, id_ in labels.items()}
|
701 |
+
for task, labels in self.label_map.items()
|
702 |
+
}
|
703 |
+
return preprocess_kwargs, {}, {}
|
704 |
+
|
705 |
+
def preprocess(self, text, **kwargs):
|
706 |
+
|
707 |
+
tokenized_inputs = self.tokenizer(
|
708 |
+
text, padding="max_length", truncation=True, max_length=512
|
709 |
+
)
|
710 |
+
|
711 |
+
text_sentence = tokenize(add_spaces_around_punctuation(text))
|
712 |
+
return tokenized_inputs, text_sentence, text
|
713 |
+
|
714 |
+
def _forward(self, inputs):
|
715 |
+
inputs, text_sentences, text = inputs
|
716 |
+
input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
|
717 |
+
self.model.device
|
718 |
+
)
|
719 |
+
attention_mask = torch.tensor([inputs["attention_mask"]], dtype=torch.long).to(
|
720 |
+
self.model.device
|
721 |
+
)
|
722 |
+
with torch.no_grad():
|
723 |
+
outputs = self.model(input_ids, attention_mask)
|
724 |
+
return outputs, text_sentences, text
|
725 |
+
|
726 |
+
def is_within(self, entity1, entity2):
|
727 |
+
"""Check if entity1 is fully within the bounds of entity2."""
|
728 |
+
return (
|
729 |
+
entity1["lOffset"] >= entity2["lOffset"]
|
730 |
+
and entity1["rOffset"] <= entity2["rOffset"]
|
731 |
+
)
|
732 |
+
|
733 |
+
def postprocess(self, outputs, **kwargs):
|
734 |
+
"""
|
735 |
+
Postprocess the outputs of the model
|
736 |
+
:param outputs:
|
737 |
+
:param kwargs:
|
738 |
+
:return:
|
739 |
+
"""
|
740 |
+
tokens_result, text_sentence, text = outputs
|
741 |
+
|
742 |
+
predictions = {}
|
743 |
+
confidence_scores = {}
|
744 |
+
for task, logits in tokens_result.logits.items():
|
745 |
+
predictions[task] = torch.argmax(logits, dim=-1).tolist()[0]
|
746 |
+
confidence_scores[task] = F.softmax(logits, dim=-1).tolist()[0]
|
747 |
+
|
748 |
+
entities = {}
|
749 |
+
for task in predictions.keys():
|
750 |
+
words_list, preds_list, confidence_list = realign(
|
751 |
+
text_sentence,
|
752 |
+
predictions[task],
|
753 |
+
confidence_scores[task],
|
754 |
+
self.tokenizer,
|
755 |
+
self.id2label[task],
|
756 |
+
)
|
757 |
+
|
758 |
+
entities[task] = get_entities(words_list, preds_list, confidence_list, text)
|
759 |
+
|
760 |
+
# add titles to comp entities
|
761 |
+
# from pprint import pprint
|
762 |
+
|
763 |
+
# print("Before:")
|
764 |
+
# pprint(entities)
|
765 |
+
|
766 |
+
all_entities = []
|
767 |
+
coarse_entities = []
|
768 |
+
for key in entities:
|
769 |
+
if key in ["NE-COARSE-LIT"]:
|
770 |
+
coarse_entities = entities[key]
|
771 |
+
all_entities.extend(entities[key])
|
772 |
+
|
773 |
+
if DEBUG:
|
774 |
+
print(all_entities)
|
775 |
+
# print("After remove_included_entities:")
|
776 |
+
all_entities = remove_included_entities(all_entities)
|
777 |
+
if DEBUG:
|
778 |
+
print("After remove_included_entities:", all_entities)
|
779 |
+
all_entities = remove_trailing_stopwords(all_entities)
|
780 |
+
if DEBUG:
|
781 |
+
print("After remove_trailing_stopwords:", all_entities)
|
782 |
+
all_entities = postprocess_entities(all_entities)
|
783 |
+
if DEBUG:
|
784 |
+
print("After postprocess_entities:", all_entities)
|
785 |
+
all_entities = refine_entities_with_coarse(all_entities, coarse_entities)
|
786 |
+
if DEBUG:
|
787 |
+
print("After refine_entities_with_coarse:", all_entities)
|
788 |
+
# print("After attach_comp_to_closest:")
|
789 |
+
# pprint(all_entities)
|
790 |
+
# print("\n")
|
791 |
+
return all_entities
|