--- datasets: - nhull/tripadvisor-split-dataset-v2 base_model: - huawei-noah/TinyBERT_General_4L_312D license: apache-2.0 language: - en metrics: - accuracy - precision - recall - f1 - confusion_matrix --- # TinyBERT Sentiment Analysis Model This is a fine-tuned TinyBERT model for sentiment analysis on the Tripadvisor dataset. ## Model Details - **Base Model**: `huawei-noah/TinyBERT_General_4L_312D` - **Dataset**: `nhull/tripadvisor-split-dataset-v2` - **Task**: Multiclass sentiment analysis (5 classes) ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model tokenizer = AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model") model = AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model") # Predict sentiment text = "The hotel was amazing and had great service!" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predicted_class = outputs.logits.argmax().item() print(f"Predicted class: {predicted_class}") ``` ## Testing results - **Evaluation accuracy**: 0.6535 - **Precision**: 0.635 - **Recall**: 0.641 - **F1 score**: 0.636 - **Confusion matrix**: ``` | Predicted → | 1 | 2 | 3 | 4 | 5 | |---------------|------|------|------|------|------| | Actual ↓ | | | | | | | 1 (Very Neg.) | 1219 | 318 | 48 | 6 | 9 | | 2 (Negative) | 432 | 826 | 294 | 32 | 16 | | 3 (Neutral) | 51 | 306 | 928 | 275 | 40 | | 4 (Positive) | 3 | 22 | 223 | 833 | 519 | | 5 (Very Pos.) | 9 | 6 | 16 | 247 | 1322 | ```