--- license: other tags: - vision - image-segmentation - generated_from_trainer base_model: nvidia/mit-b0 model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the eleninaneversmiles/wheels dataset. It achieves the following results on the evaluation set: - Loss: 0.1170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9481 | 4.0 | 20 | 3.5435 | | 2.6731 | 8.0 | 40 | 3.0067 | | 2.6124 | 12.0 | 60 | 2.4952 | | 2.0959 | 16.0 | 80 | 2.0672 | | 2.0621 | 20.0 | 100 | 1.8896 | | 1.8677 | 24.0 | 120 | 1.6907 | | 1.7867 | 28.0 | 140 | 1.5101 | | 1.3991 | 32.0 | 160 | 1.3829 | | 1.1594 | 36.0 | 180 | 1.2332 | | 1.0339 | 40.0 | 200 | 1.0889 | | 0.8877 | 44.0 | 220 | 0.9699 | | 0.9484 | 48.0 | 240 | 0.8998 | | 0.8533 | 52.0 | 260 | 0.7505 | | 0.5803 | 56.0 | 280 | 0.6548 | | 0.5161 | 60.0 | 300 | 0.5719 | | 0.4307 | 64.0 | 320 | 0.5128 | | 0.3615 | 68.0 | 340 | 0.4228 | | 0.3185 | 72.0 | 360 | 0.3733 | | 0.2852 | 76.0 | 380 | 0.3421 | | 0.299 | 80.0 | 400 | 0.3033 | | 0.2014 | 84.0 | 420 | 0.2814 | | 0.2139 | 88.0 | 440 | 0.2346 | | 0.147 | 92.0 | 460 | 0.2176 | | 0.1386 | 96.0 | 480 | 0.2030 | | 0.1189 | 100.0 | 500 | 0.1950 | | 0.1527 | 104.0 | 520 | 0.1804 | | 0.093 | 108.0 | 540 | 0.1708 | | 0.0934 | 112.0 | 560 | 0.1712 | | 0.0878 | 116.0 | 580 | 0.1582 | | 0.1096 | 120.0 | 600 | 0.1553 | | 0.0743 | 124.0 | 620 | 0.1460 | | 0.0677 | 128.0 | 640 | 0.1413 | | 0.0661 | 132.0 | 660 | 0.1399 | | 0.0619 | 136.0 | 680 | 0.1359 | | 0.0617 | 140.0 | 700 | 0.1318 | | 0.064 | 144.0 | 720 | 0.1316 | | 0.0542 | 148.0 | 740 | 0.1309 | | 0.0584 | 152.0 | 760 | 0.1286 | | 0.0525 | 156.0 | 780 | 0.1298 | | 0.069 | 160.0 | 800 | 0.1283 | | 0.05 | 164.0 | 820 | 0.1270 | | 0.0497 | 168.0 | 840 | 0.1240 | | 0.0478 | 172.0 | 860 | 0.1231 | | 0.0472 | 176.0 | 880 | 0.1190 | | 0.0457 | 180.0 | 900 | 0.1207 | | 0.0435 | 184.0 | 920 | 0.1221 | | 0.0427 | 188.0 | 940 | 0.1212 | | 0.0425 | 192.0 | 960 | 0.1197 | | 0.0481 | 196.0 | 980 | 0.1199 | | 0.0484 | 200.0 | 1000 | 0.1210 | | 0.0553 | 204.0 | 1020 | 0.1197 | | 0.0389 | 208.0 | 1040 | 0.1177 | | 0.0391 | 212.0 | 1060 | 0.1181 | | 0.0491 | 216.0 | 1080 | 0.1226 | | 0.038 | 220.0 | 1100 | 0.1189 | | 0.0443 | 224.0 | 1120 | 0.1177 | | 0.038 | 228.0 | 1140 | 0.1178 | | 0.0365 | 232.0 | 1160 | 0.1186 | | 0.044 | 236.0 | 1180 | 0.1174 | | 0.0608 | 240.0 | 1200 | 0.1205 | | 0.0356 | 244.0 | 1220 | 0.1200 | | 0.0431 | 248.0 | 1240 | 0.1195 | | 0.0414 | 252.0 | 1260 | 0.1183 | | 0.0374 | 256.0 | 1280 | 0.1173 | | 0.0389 | 260.0 | 1300 | 0.1185 | | 0.0335 | 264.0 | 1320 | 0.1181 | | 0.0363 | 268.0 | 1340 | 0.1182 | | 0.0408 | 272.0 | 1360 | 0.1191 | | 0.0411 | 276.0 | 1380 | 0.1186 | | 0.037 | 280.0 | 1400 | 0.1176 | | 0.0424 | 284.0 | 1420 | 0.1185 | | 0.04 | 288.0 | 1440 | 0.1200 | | 0.0399 | 292.0 | 1460 | 0.1187 | | 0.0415 | 296.0 | 1480 | 0.1186 | | 0.038 | 300.0 | 1500 | 0.1170 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cpu - Datasets 2.19.2 - Tokenizers 0.19.1