import gc import math import os import platform if platform.system() == "Darwin": os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" import random import re import traceback import cv2 import gradio as gr import numpy as np import torch from diffusers import (DDIMScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, StableDiffusionInpaintPipeline) from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler from modules import devices, script_callbacks, shared from modules.processing import create_infotext, process_images from modules.sd_models import get_closet_checkpoint_match from modules.sd_samplers import samplers_for_img2img from PIL import Image, ImageFilter, ImageOps from PIL.PngImagePlugin import PngInfo from torch.hub import download_url_to_file from torchvision import transforms import inpalib from ia_check_versions import ia_check_versions from ia_config import (IAConfig, get_ia_config_index, get_webui_setting, set_ia_config, setup_ia_config_ini) from ia_file_manager import IAFileManager, download_model_from_hf, ia_file_manager from ia_logging import draw_text_image, ia_logging from ia_threading import (async_post_reload_model_weights, await_backup_reload_ckpt_info, await_pre_reload_model_weights, clear_cache_decorator, offload_reload_decorator) from ia_ui_items import (get_cleaner_model_ids, get_inp_model_ids, get_inp_webui_model_ids, get_padding_mode_names, get_sam_model_ids, get_sampler_names) from ia_webui_controlnet import (backup_alwayson_scripts, clear_controlnet_cache, disable_all_alwayson_scripts, disable_alwayson_scripts_wo_cn, find_controlnet, get_controlnet_args_to, get_max_args_to, get_sd_img2img_processing, restore_alwayson_scripts) @clear_cache_decorator def download_model(sam_model_id): """Download SAM model. Args: sam_model_id (str): SAM model id Returns: str: download status """ if "_hq_" in sam_model_id: url_sam = "https://huggingface.co/Uminosachi/sam-hq/resolve/main/" + sam_model_id elif "FastSAM" in sam_model_id: url_sam = "https://huggingface.co/Uminosachi/FastSAM/resolve/main/" + sam_model_id elif "mobile_sam" in sam_model_id: url_sam = "https://huggingface.co/Uminosachi/MobileSAM/resolve/main/" + sam_model_id else: # url_sam_vit_h_4b8939 = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" url_sam = "https://dl.fbaipublicfiles.com/segment_anything/" + sam_model_id sam_checkpoint = os.path.join(ia_file_manager.models_dir, sam_model_id) if not os.path.isfile(sam_checkpoint): try: download_url_to_file(url_sam, sam_checkpoint) except Exception as e: ia_logging.error(str(e)) return str(e) return IAFileManager.DOWNLOAD_COMPLETE else: return "Model already exists" sam_dict = dict(sam_masks=None, mask_image=None, cnet=None, orig_image=None, pad_mask=None) def save_mask_image(mask_image, save_mask_chk=False): """Save mask image. Args: mask_image (np.ndarray): mask image save_mask_chk (bool, optional): If True, save mask image. Defaults to False. Returns: None """ if save_mask_chk: save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) Image.fromarray(mask_image).save(save_name) @clear_cache_decorator def input_image_upload(input_image, sam_image, sel_mask): global sam_dict sam_dict["orig_image"] = input_image sam_dict["pad_mask"] = None if (sam_dict["mask_image"] is None or not isinstance(sam_dict["mask_image"], np.ndarray) or sam_dict["mask_image"].shape != input_image.shape): sam_dict["mask_image"] = np.zeros_like(input_image, dtype=np.uint8) ret_sel_image = cv2.addWeighted(input_image, 0.5, sam_dict["mask_image"], 0.5, 0) if sam_image is None or not isinstance(sam_image, dict) or "image" not in sam_image: sam_dict["sam_masks"] = None ret_sam_image = np.zeros_like(input_image, dtype=np.uint8) elif sam_image["image"].shape == input_image.shape: ret_sam_image = gr.update() else: sam_dict["sam_masks"] = None ret_sam_image = gr.update(value=np.zeros_like(input_image, dtype=np.uint8)) if sel_mask is None or not isinstance(sel_mask, dict) or "image" not in sel_mask: ret_sel_mask = ret_sel_image elif sel_mask["image"].shape == ret_sel_image.shape and np.all(sel_mask["image"] == ret_sel_image): ret_sel_mask = gr.update() else: ret_sel_mask = gr.update(value=ret_sel_image) return ret_sam_image, ret_sel_mask, gr.update(interactive=True) @clear_cache_decorator def run_padding(input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode="edge"): global sam_dict if input_image is None or sam_dict["orig_image"] is None: sam_dict["orig_image"] = None sam_dict["pad_mask"] = None return None, "Input image not found" orig_image = sam_dict["orig_image"] height, width = orig_image.shape[:2] pad_width, pad_height = (int(width * pad_scale_width), int(height * pad_scale_height)) ia_logging.info(f"resize by padding: ({height}, {width}) -> ({pad_height}, {pad_width})") pad_size_w, pad_size_h = (pad_width - width, pad_height - height) pad_size_l = int(pad_size_w * pad_lr_barance) pad_size_r = pad_size_w - pad_size_l pad_size_t = int(pad_size_h * pad_tb_barance) pad_size_b = pad_size_h - pad_size_t pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r), (0, 0)] if padding_mode == "constant": fill_value = get_webui_setting("inpaint_anything_padding_fill", 127) pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode, constant_values=fill_value) else: pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode) mask_pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r)] pad_mask = np.zeros((height, width), dtype=np.uint8) pad_mask = np.pad(pad_mask, pad_width=mask_pad_width, mode="constant", constant_values=255) sam_dict["pad_mask"] = dict(segmentation=pad_mask.astype(bool)) return pad_image, "Padding done" @offload_reload_decorator @clear_cache_decorator def run_sam(input_image, sam_model_id, sam_image, anime_style_chk=False): global sam_dict if not inpalib.sam_file_exists(sam_model_id): ret_sam_image = None if sam_image is None else gr.update() return ret_sam_image, f"{sam_model_id} not found, please download" if input_image is None: ret_sam_image = None if sam_image is None else gr.update() return ret_sam_image, "Input image not found" set_ia_config(IAConfig.KEYS.SAM_MODEL_ID, sam_model_id, IAConfig.SECTIONS.USER) if sam_dict["sam_masks"] is not None: sam_dict["sam_masks"] = None gc.collect() ia_logging.info(f"input_image: {input_image.shape} {input_image.dtype}") try: sam_masks = inpalib.generate_sam_masks(input_image, sam_model_id, anime_style_chk) sam_masks = inpalib.sort_masks_by_area(sam_masks) sam_masks = inpalib.insert_mask_to_sam_masks(sam_masks, sam_dict["pad_mask"]) seg_image = inpalib.create_seg_color_image(input_image, sam_masks) sam_dict["sam_masks"] = sam_masks except Exception as e: print(traceback.format_exc()) ia_logging.error(str(e)) ret_sam_image = None if sam_image is None else gr.update() return ret_sam_image, "Segment Anything failed" if sam_image is None: return seg_image, "Segment Anything complete" else: if sam_image["image"].shape == seg_image.shape and np.all(sam_image["image"] == seg_image): return gr.update(), "Segment Anything complete" else: return gr.update(value=seg_image), "Segment Anything complete" @clear_cache_decorator def select_mask(input_image, sam_image, invert_chk, ignore_black_chk, sel_mask): global sam_dict if sam_dict["sam_masks"] is None or sam_image is None: ret_sel_mask = None if sel_mask is None else gr.update() return ret_sel_mask sam_masks = sam_dict["sam_masks"] # image = sam_image["image"] mask = sam_image["mask"][:, :, 0:1] try: seg_image = inpalib.create_mask_image(mask, sam_masks, ignore_black_chk) if invert_chk: seg_image = inpalib.invert_mask(seg_image) sam_dict["mask_image"] = seg_image except Exception as e: print(traceback.format_exc()) ia_logging.error(str(e)) ret_sel_mask = None if sel_mask is None else gr.update() return ret_sel_mask if input_image is not None and input_image.shape == seg_image.shape: ret_image = cv2.addWeighted(input_image, 0.5, seg_image, 0.5, 0) else: ret_image = seg_image if sel_mask is None: return ret_image else: if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): return gr.update() else: return gr.update(value=ret_image) @clear_cache_decorator def expand_mask(input_image, sel_mask, expand_iteration=1): global sam_dict if sam_dict["mask_image"] is None or sel_mask is None: return None new_sel_mask = sam_dict["mask_image"] expand_iteration = int(np.clip(expand_iteration, 1, 100)) new_sel_mask = cv2.dilate(new_sel_mask, np.ones((3, 3), dtype=np.uint8), iterations=expand_iteration) sam_dict["mask_image"] = new_sel_mask if input_image is not None and input_image.shape == new_sel_mask.shape: ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) else: ret_image = new_sel_mask if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): return gr.update() else: return gr.update(value=ret_image) @clear_cache_decorator def apply_mask(input_image, sel_mask): global sam_dict if sam_dict["mask_image"] is None or sel_mask is None: return None sel_mask_image = sam_dict["mask_image"] sel_mask_mask = np.logical_not(sel_mask["mask"][:, :, 0:3].astype(bool)).astype(np.uint8) new_sel_mask = sel_mask_image * sel_mask_mask sam_dict["mask_image"] = new_sel_mask if input_image is not None and input_image.shape == new_sel_mask.shape: ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) else: ret_image = new_sel_mask if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): return gr.update() else: return gr.update(value=ret_image) @clear_cache_decorator def add_mask(input_image, sel_mask): global sam_dict if sam_dict["mask_image"] is None or sel_mask is None: return None sel_mask_image = sam_dict["mask_image"] sel_mask_mask = sel_mask["mask"][:, :, 0:3].astype(bool).astype(np.uint8) new_sel_mask = sel_mask_image + (sel_mask_mask * np.invert(sel_mask_image, dtype=np.uint8)) sam_dict["mask_image"] = new_sel_mask if input_image is not None and input_image.shape == new_sel_mask.shape: ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) else: ret_image = new_sel_mask if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): return gr.update() else: return gr.update(value=ret_image) def auto_resize_to_pil(input_image, mask_image): init_image = Image.fromarray(input_image).convert("RGB") mask_image = Image.fromarray(mask_image).convert("RGB") assert init_image.size == mask_image.size, "The sizes of the image and mask do not match" width, height = init_image.size new_height = (height // 8) * 8 new_width = (width // 8) * 8 if new_width < width or new_height < height: if (new_width / width) < (new_height / height): scale = new_height / height else: scale = new_width / width resize_height = int(height*scale+0.5) resize_width = int(width*scale+0.5) if height != resize_height or width != resize_width: ia_logging.info(f"resize: ({height}, {width}) -> ({resize_height}, {resize_width})") init_image = transforms.functional.resize(init_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS) mask_image = transforms.functional.resize(mask_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS) if resize_height != new_height or resize_width != new_width: ia_logging.info(f"center_crop: ({resize_height}, {resize_width}) -> ({new_height}, {new_width})") init_image = transforms.functional.center_crop(init_image, (new_height, new_width)) mask_image = transforms.functional.center_crop(mask_image, (new_height, new_width)) return init_image, mask_image @offload_reload_decorator @clear_cache_decorator def run_inpaint(input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk, sampler_name="DDIM", iteration_count=1): global sam_dict if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: ia_logging.error("The image or mask does not exist") return mask_image = sam_dict["mask_image"] if input_image.shape != mask_image.shape: ia_logging.error("The sizes of the image and mask do not match") return set_ia_config(IAConfig.KEYS.INP_MODEL_ID, inp_model_id, IAConfig.SECTIONS.USER) save_mask_image(mask_image, save_mask_chk) ia_logging.info(f"Loading model {inp_model_id}") config_offline_inpainting = get_webui_setting("inpaint_anything_offline_inpainting", False) if config_offline_inpainting: ia_logging.info("Run Inpainting on offline network: {}".format(str(config_offline_inpainting))) local_files_only = False local_file_status = download_model_from_hf(inp_model_id, local_files_only=True) if local_file_status != IAFileManager.DOWNLOAD_COMPLETE: if config_offline_inpainting: ia_logging.warning(local_file_status) return else: local_files_only = True ia_logging.info("local_files_only: {}".format(str(local_files_only))) if platform.system() == "Darwin" or devices.device == devices.cpu or ia_check_versions.torch_on_amd_rocm: torch_dtype = torch.float32 else: torch_dtype = torch.float16 try: pipe = StableDiffusionInpaintPipeline.from_pretrained(inp_model_id, torch_dtype=torch_dtype, local_files_only=local_files_only) except Exception as e: ia_logging.error(str(e)) if not config_offline_inpainting: try: pipe = StableDiffusionInpaintPipeline.from_pretrained(inp_model_id, torch_dtype=torch_dtype, resume_download=True) except Exception as e: ia_logging.error(str(e)) try: pipe = StableDiffusionInpaintPipeline.from_pretrained(inp_model_id, torch_dtype=torch_dtype, force_download=True) except Exception as e: ia_logging.error(str(e)) return else: return pipe.safety_checker = None ia_logging.info(f"Using sampler {sampler_name}") if sampler_name == "DDIM": pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) elif sampler_name == "Euler": pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) elif sampler_name == "Euler a": pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) elif sampler_name == "DPM2 Karras": pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) elif sampler_name == "DPM2 a Karras": pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) else: ia_logging.info("Sampler fallback to DDIM") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) if platform.system() == "Darwin": pipe = pipe.to("mps" if ia_check_versions.torch_mps_is_available else "cpu") pipe.enable_attention_slicing() torch_generator = torch.Generator(devices.cpu) else: if ia_check_versions.diffusers_enable_cpu_offload and devices.device != devices.cpu: ia_logging.info("Enable model cpu offload") pipe.enable_model_cpu_offload() else: pipe = pipe.to(devices.device) if shared.xformers_available: ia_logging.info("Enable xformers memory efficient attention") pipe.enable_xformers_memory_efficient_attention() else: ia_logging.info("Enable attention slicing") pipe.enable_attention_slicing() if "privateuseone" in str(getattr(devices.device, "type", "")): torch_generator = torch.Generator(devices.cpu) else: torch_generator = torch.Generator(devices.device) init_image, mask_image = auto_resize_to_pil(input_image, mask_image) width, height = init_image.size output_list = [] iteration_count = iteration_count if iteration_count is not None else 1 for count in range(int(iteration_count)): gc.collect() if seed < 0 or count > 0: seed = random.randint(0, 2147483647) generator = torch_generator.manual_seed(seed) pipe_args_dict = { "prompt": prompt, "image": init_image, "width": width, "height": height, "mask_image": mask_image, "num_inference_steps": ddim_steps, "guidance_scale": cfg_scale, "negative_prompt": n_prompt, "generator": generator, } output_image = pipe(**pipe_args_dict).images[0] if composite_chk: dilate_mask_image = Image.fromarray(cv2.dilate(np.array(mask_image), np.ones((3, 3), dtype=np.uint8), iterations=4)) output_image = Image.composite(output_image, init_image, dilate_mask_image.convert("L").filter(ImageFilter.GaussianBlur(3))) generation_params = { "Steps": ddim_steps, "Sampler": sampler_name, "CFG scale": cfg_scale, "Seed": seed, "Size": f"{width}x{height}", "Model": inp_model_id, } generation_params_text = ", ".join([k if k == v else f"{k}: {v}" for k, v in generation_params.items() if v is not None]) prompt_text = prompt if prompt else "" negative_prompt_text = "\nNegative prompt: " + n_prompt if n_prompt else "" infotext = f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() metadata = PngInfo() metadata.add_text("parameters", infotext) save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(inp_model_id), str(seed)]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) output_image.save(save_name, pnginfo=metadata) output_list.append(output_image) yield output_list, max([1, iteration_count - (count + 1)]) @offload_reload_decorator @clear_cache_decorator def run_cleaner(input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk): global sam_dict if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: ia_logging.error("The image or mask does not exist") return None mask_image = sam_dict["mask_image"] if input_image.shape != mask_image.shape: ia_logging.error("The sizes of the image and mask do not match") return None save_mask_image(mask_image, cleaner_save_mask_chk) ia_logging.info(f"Loading model {cleaner_model_id}") if platform.system() == "Darwin": model = ModelManager(name=cleaner_model_id, device=devices.cpu) else: model = ModelManager(name=cleaner_model_id, device=devices.device) init_image, mask_image = auto_resize_to_pil(input_image, mask_image) width, height = init_image.size init_image = np.array(init_image) mask_image = np.array(mask_image.convert("L")) config = Config( ldm_steps=20, ldm_sampler=LDMSampler.ddim, hd_strategy=HDStrategy.ORIGINAL, hd_strategy_crop_margin=32, hd_strategy_crop_trigger_size=512, hd_strategy_resize_limit=512, prompt="", sd_steps=20, sd_sampler=SDSampler.ddim ) output_image = model(image=init_image, mask=mask_image, config=config) output_image = cv2.cvtColor(output_image.astype(np.uint8), cv2.COLOR_BGR2RGB) output_image = Image.fromarray(output_image) save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(cleaner_model_id)]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) output_image.save(save_name) del model return [output_image] @clear_cache_decorator def run_get_alpha_image(input_image, sel_mask): global sam_dict if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: ia_logging.error("The image or mask does not exist") return None, "" mask_image = sam_dict["mask_image"] if input_image.shape != mask_image.shape: ia_logging.error("The sizes of the image and mask do not match") return None, "" alpha_image = Image.fromarray(input_image).convert("RGBA") mask_image = Image.fromarray(mask_image).convert("L") alpha_image.putalpha(mask_image) save_name = "_".join([ia_file_manager.savename_prefix, "rgba_image"]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) alpha_image.save(save_name) return alpha_image, f"saved: {save_name}" @clear_cache_decorator def run_get_mask(sel_mask): global sam_dict if sam_dict["mask_image"] is None or sel_mask is None: return None mask_image = sam_dict["mask_image"] save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) Image.fromarray(mask_image).save(save_name) return mask_image @clear_cache_decorator def run_cn_inpaint(input_image, sel_mask, cn_prompt, cn_n_prompt, cn_sampler_id, cn_ddim_steps, cn_cfg_scale, cn_strength, cn_seed, cn_module_id, cn_model_id, cn_save_mask_chk, cn_low_vram_chk, cn_weight, cn_mode, cn_iteration_count=1, cn_ref_module_id=None, cn_ref_image=None, cn_ref_weight=1.0, cn_ref_mode="Balanced", cn_ref_resize_mode="resize", cn_ipa_or_ref=None, cn_ipa_model_id=None): global sam_dict if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: ia_logging.error("The image or mask does not exist") return mask_image = sam_dict["mask_image"] if input_image.shape != mask_image.shape: ia_logging.error("The sizes of the image and mask do not match") return await_pre_reload_model_weights() if (shared.sd_model.parameterization == "v" and "sd15" in cn_model_id): ia_logging.error("The SDv2 model is not compatible with the ControlNet model") ret_image = draw_text_image(input_image, "The SD v2 model is not compatible with the ControlNet model") yield [ret_image], 1 return if (getattr(shared.sd_model, "is_sdxl", False) and "sd15" in cn_model_id): ia_logging.error("The SDXL model is not compatible with the ControlNet model") ret_image = draw_text_image(input_image, "The SD XL model is not compatible with the ControlNet model") yield [ret_image], 1 return cnet = sam_dict.get("cnet", None) if cnet is None: ia_logging.warning("The ControlNet extension is not loaded") return save_mask_image(mask_image, cn_save_mask_chk) init_image, mask_image = auto_resize_to_pil(input_image, mask_image) width, height = init_image.size input_mask = None if "inpaint_only" in cn_module_id else mask_image p = get_sd_img2img_processing(init_image, input_mask, cn_prompt, cn_n_prompt, cn_sampler_id, cn_ddim_steps, cn_cfg_scale, cn_strength, cn_seed) backup_alwayson_scripts(p.scripts) disable_alwayson_scripts_wo_cn(cnet, p.scripts) cn_units = [cnet.to_processing_unit(dict( enabled=True, module=cn_module_id, model=cn_model_id, weight=cn_weight, image={"image": np.array(init_image), "mask": np.array(mask_image)}, resize_mode=cnet.ResizeMode.RESIZE, low_vram=cn_low_vram_chk, processor_res=min(width, height), guidance_start=0.0, guidance_end=1.0, pixel_perfect=True, control_mode=cn_mode, ))] if cn_ref_module_id is not None and cn_ref_image is not None: if cn_ref_resize_mode == "tile": ref_height, ref_width = cn_ref_image.shape[:2] num_h = math.ceil(height / ref_height) if height > ref_height else 1 num_h = num_h + 1 if (num_h % 2) == 0 else num_h num_w = math.ceil(width / ref_width) if width > ref_width else 1 num_w = num_w + 1 if (num_w % 2) == 0 else num_w cn_ref_image = np.tile(cn_ref_image, (num_h, num_w, 1)) cn_ref_image = transforms.functional.center_crop(Image.fromarray(cn_ref_image), (height, width)) ia_logging.info(f"Reference image is tiled ({num_h}, {num_w}) times and cropped to ({height}, {width})") else: cn_ref_image = ImageOps.fit(Image.fromarray(cn_ref_image), (width, height), method=Image.Resampling.LANCZOS) ia_logging.info(f"Reference image is resized and cropped to ({height}, {width})") assert cn_ref_image.size == init_image.size, "The sizes of the reference image and input image do not match" cn_ref_model_id = None if cn_ipa_or_ref is not None and cn_ipa_model_id is not None: cn_ipa_module_ids = [cn for cn in cnet.get_modules() if "ip-adapter" in cn and "sd15" in cn] if len(cn_ipa_module_ids) > 0 and cn_ipa_or_ref == "IP-Adapter": cn_ref_module_id = cn_ipa_module_ids[0] cn_ref_model_id = cn_ipa_model_id cn_units.append(cnet.to_processing_unit(dict( enabled=True, module=cn_ref_module_id, model=cn_ref_model_id, weight=cn_ref_weight, image={"image": np.array(cn_ref_image), "mask": None}, resize_mode=cnet.ResizeMode.RESIZE, low_vram=cn_low_vram_chk, processor_res=min(width, height), guidance_start=0.0, guidance_end=1.0, pixel_perfect=True, control_mode=cn_ref_mode, threshold_a=0.5, ))) p.script_args = np.zeros(get_controlnet_args_to(cnet, p.scripts)).tolist() cnet.update_cn_script_in_processing(p, cn_units) no_hash_cn_model_id = re.sub(r"\s\[[0-9a-f]{8,10}\]", "", cn_model_id).strip() output_list = [] cn_iteration_count = cn_iteration_count if cn_iteration_count is not None else 1 for count in range(int(cn_iteration_count)): gc.collect() if cn_seed < 0 or count > 0: cn_seed = random.randint(0, 2147483647) p.init_images = [init_image] p.seed = cn_seed try: processed = process_images(p) except devices.NansException: ia_logging.error("A tensor with all NaNs was produced in VAE") ret_image = draw_text_image( input_image, "A tensor with all NaNs was produced in VAE") clear_controlnet_cache(cnet, p.scripts) restore_alwayson_scripts(p.scripts) yield [ret_image], 1 return if processed is not None and len(processed.images) > 0: output_image = processed.images[0] infotext = create_infotext(p, all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds) metadata = PngInfo() metadata.add_text("parameters", infotext) save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(no_hash_cn_model_id), str(cn_seed)]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) output_image.save(save_name, pnginfo=metadata) output_list.append(output_image) yield output_list, max([1, cn_iteration_count - (count + 1)]) clear_controlnet_cache(cnet, p.scripts) restore_alwayson_scripts(p.scripts) @clear_cache_decorator def run_webui_inpaint(input_image, sel_mask, webui_prompt, webui_n_prompt, webui_sampler_id, webui_ddim_steps, webui_cfg_scale, webui_strength, webui_seed, webui_model_id, webui_save_mask_chk, webui_mask_blur, webui_fill_mode, webui_iteration_count=1, webui_enable_refiner_chk=False, webui_refiner_checkpoint="", webui_refiner_switch_at=0.8): global sam_dict if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: ia_logging.error("The image or mask does not exist") return mask_image = sam_dict["mask_image"] if input_image.shape != mask_image.shape: ia_logging.error("The sizes of the image and mask do not match") return if "sdxl_vae" in getattr(shared.opts, "sd_vae", ""): ia_logging.error("The SDXL VAE is not compatible with the inpainting model") ret_image = draw_text_image( input_image, "The SDXL VAE is not compatible with the inpainting model") yield [ret_image], 1 return set_ia_config(IAConfig.KEYS.INP_WEBUI_MODEL_ID, webui_model_id, IAConfig.SECTIONS.USER) save_mask_image(mask_image, webui_save_mask_chk) info = get_closet_checkpoint_match(webui_model_id) if info is None: ia_logging.error(f"No model found: {webui_model_id}") return await_backup_reload_ckpt_info(info=info) init_image, mask_image = auto_resize_to_pil(input_image, mask_image) width, height = init_image.size p = get_sd_img2img_processing(init_image, mask_image, webui_prompt, webui_n_prompt, webui_sampler_id, webui_ddim_steps, webui_cfg_scale, webui_strength, webui_seed, webui_mask_blur, webui_fill_mode) backup_alwayson_scripts(p.scripts) disable_all_alwayson_scripts(p.scripts) p.script_args = np.zeros(get_max_args_to(p.scripts)).tolist() if ia_check_versions.webui_refiner_is_available and webui_enable_refiner_chk: p.refiner_checkpoint = webui_refiner_checkpoint p.refiner_switch_at = webui_refiner_switch_at no_hash_webui_model_id = re.sub(r"\s\[[0-9a-f]{8,10}\]", "", webui_model_id).strip() no_hash_webui_model_id = os.path.splitext(no_hash_webui_model_id)[0] output_list = [] webui_iteration_count = webui_iteration_count if webui_iteration_count is not None else 1 for count in range(int(webui_iteration_count)): gc.collect() if webui_seed < 0 or count > 0: webui_seed = random.randint(0, 2147483647) p.init_images = [init_image] p.seed = webui_seed try: processed = process_images(p) except devices.NansException: ia_logging.error("A tensor with all NaNs was produced in VAE") ret_image = draw_text_image( input_image, "A tensor with all NaNs was produced in VAE") restore_alwayson_scripts(p.scripts) yield [ret_image], 1 return if processed is not None and len(processed.images) > 0: output_image = processed.images[0] infotext = create_infotext(p, all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds) metadata = PngInfo() metadata.add_text("parameters", infotext) save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(no_hash_webui_model_id), str(webui_seed)]) + ".png" save_name = os.path.join(ia_file_manager.outputs_dir, save_name) output_image.save(save_name, pnginfo=metadata) output_list.append(output_image) yield output_list, max([1, webui_iteration_count - (count + 1)]) restore_alwayson_scripts(p.scripts) def on_ui_tabs(): global sam_dict setup_ia_config_ini() sampler_names = get_sampler_names() sam_model_ids = get_sam_model_ids() sam_model_index = get_ia_config_index(IAConfig.KEYS.SAM_MODEL_ID, IAConfig.SECTIONS.USER) inp_model_ids = get_inp_model_ids() inp_model_index = get_ia_config_index(IAConfig.KEYS.INP_MODEL_ID, IAConfig.SECTIONS.USER) cleaner_model_ids = get_cleaner_model_ids() padding_mode_names = get_padding_mode_names() sam_dict["cnet"] = find_controlnet() cn_enabled = False if sam_dict["cnet"] is not None: cn_module_ids = [cn for cn in sam_dict["cnet"].get_modules() if "inpaint" in cn] cn_module_index = cn_module_ids.index("inpaint_only") if "inpaint_only" in cn_module_ids else 0 cn_model_ids = [cn for cn in sam_dict["cnet"].get_models() if "inpaint" in cn] cn_modes = [mode.value for mode in sam_dict["cnet"].ControlMode] if len(cn_module_ids) > 0 and len(cn_model_ids) > 0: cn_enabled = True if samplers_for_img2img is not None and len(samplers_for_img2img) > 0: cn_sampler_ids = [sampler.name for sampler in samplers_for_img2img] else: cn_sampler_ids = ["DDIM"] cn_sampler_index = cn_sampler_ids.index("DDIM") if "DDIM" in cn_sampler_ids else 0 cn_ref_only = False try: if cn_enabled and sam_dict["cnet"].get_max_models_num() > 1: cn_ref_module_ids = [cn for cn in sam_dict["cnet"].get_modules() if "reference" in cn] if len(cn_ref_module_ids) > 0: cn_ref_only = True except AttributeError: pass cn_ip_adapter = False if cn_ref_only: cn_ipa_module_ids = [cn for cn in sam_dict["cnet"].get_modules() if "ip-adapter" in cn and "sd15" in cn] cn_ipa_model_ids = [cn for cn in sam_dict["cnet"].get_models() if "ip-adapter" in cn and "sd15" in cn] if len(cn_ipa_module_ids) > 0 and len(cn_ipa_model_ids) > 0: cn_ip_adapter = True webui_inpaint_enabled = False webui_model_ids = get_inp_webui_model_ids() if len(webui_model_ids) > 0: webui_inpaint_enabled = True webui_model_index = get_ia_config_index(IAConfig.KEYS.INP_WEBUI_MODEL_ID, IAConfig.SECTIONS.USER) if samplers_for_img2img is not None and len(samplers_for_img2img) > 0: webui_sampler_ids = [sampler.name for sampler in samplers_for_img2img] else: webui_sampler_ids = ["DDIM"] webui_sampler_index = webui_sampler_ids.index("DDIM") if "DDIM" in webui_sampler_ids else 0 out_gallery_kwargs = dict(columns=2, height=520, object_fit="contain", preview=True) with gr.Blocks(analytics_enabled=False) as inpaint_anything_interface: with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): sam_model_id = gr.Dropdown(label="Segment Anything Model ID", elem_id="sam_model_id", choices=sam_model_ids, value=sam_model_ids[sam_model_index], show_label=True) with gr.Column(): with gr.Row(): load_model_btn = gr.Button("Download model", elem_id="load_model_btn") with gr.Row(): status_text = gr.Textbox(label="", elem_id="status_text", max_lines=1, show_label=False, interactive=False) with gr.Row(): input_image = gr.Image(label="Input image", elem_id="ia_input_image", source="upload", type="numpy", interactive=True) with gr.Row(): with gr.Accordion("Padding options", elem_id="padding_options", open=False): with gr.Row(): with gr.Column(): pad_scale_width = gr.Slider(label="Scale Width", elem_id="pad_scale_width", minimum=1.0, maximum=1.5, value=1.0, step=0.01) with gr.Column(): pad_lr_barance = gr.Slider(label="Left/Right Balance", elem_id="pad_lr_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01) with gr.Row(): with gr.Column(): pad_scale_height = gr.Slider(label="Scale Height", elem_id="pad_scale_height", minimum=1.0, maximum=1.5, value=1.0, step=0.01) with gr.Column(): pad_tb_barance = gr.Slider(label="Top/Bottom Balance", elem_id="pad_tb_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01) with gr.Row(): with gr.Column(): padding_mode = gr.Dropdown(label="Padding Mode", elem_id="padding_mode", choices=padding_mode_names, value="edge") with gr.Column(): padding_btn = gr.Button("Run Padding", elem_id="padding_btn") with gr.Row(): with gr.Column(): anime_style_chk = gr.Checkbox(label="Anime Style (Up Detection, Down mask Quality)", elem_id="anime_style_chk", show_label=True, interactive=True) with gr.Column(): sam_btn = gr.Button("Run Segment Anything", elem_id="sam_btn", variant="primary", interactive=False) with gr.Tab("Inpainting", elem_id="inpainting_tab"): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Inpainting Prompt", elem_id="ia_sd_prompt") n_prompt = gr.Textbox(label="Negative Prompt", elem_id="ia_sd_n_prompt") with gr.Column(scale=0, min_width=128): gr.Markdown("Get prompt from:") get_txt2img_prompt_btn = gr.Button("txt2img", elem_id="get_txt2img_prompt_btn") get_img2img_prompt_btn = gr.Button("img2img", elem_id="get_img2img_prompt_btn") with gr.Accordion("Advanced options", elem_id="inp_advanced_options", open=False): composite_chk = gr.Checkbox(label="Mask area Only", elem_id="composite_chk", value=True, show_label=True, interactive=True) with gr.Row(): with gr.Column(): sampler_name = gr.Dropdown(label="Sampler", elem_id="sampler_name", choices=sampler_names, value=sampler_names[0], show_label=True) with gr.Column(): ddim_steps = gr.Slider(label="Sampling Steps", elem_id="ddim_steps", minimum=1, maximum=100, value=20, step=1) cfg_scale = gr.Slider(label="Guidance Scale", elem_id="cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) seed = gr.Slider( label="Seed", elem_id="sd_seed", minimum=-1, maximum=2147483647, step=1, value=-1, ) with gr.Row(): with gr.Column(): inp_model_id = gr.Dropdown(label="Inpainting Model ID", elem_id="inp_model_id", choices=inp_model_ids, value=inp_model_ids[inp_model_index], show_label=True) with gr.Column(): with gr.Row(): inpaint_btn = gr.Button("Run Inpainting", elem_id="inpaint_btn", variant="primary") with gr.Row(): save_mask_chk = gr.Checkbox(label="Save mask", elem_id="save_mask_chk", value=False, show_label=False, interactive=False, visible=False) iteration_count = gr.Slider(label="Iterations", elem_id="iteration_count", minimum=1, maximum=10, value=1, step=1) with gr.Row(): if ia_check_versions.gradio_version_is_old: out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False ).style(**out_gallery_kwargs) else: out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False, **out_gallery_kwargs) with gr.Tab("Cleaner", elem_id="cleaner_tab"): with gr.Row(): with gr.Column(): cleaner_model_id = gr.Dropdown(label="Cleaner Model ID", elem_id="cleaner_model_id", choices=cleaner_model_ids, value=cleaner_model_ids[0], show_label=True) with gr.Column(): with gr.Row(): cleaner_btn = gr.Button("Run Cleaner", elem_id="cleaner_btn", variant="primary") with gr.Row(): cleaner_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="cleaner_save_mask_chk", value=False, show_label=False, interactive=False, visible=False) with gr.Row(): if ia_check_versions.gradio_version_is_old: cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False ).style(**out_gallery_kwargs) else: cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False, **out_gallery_kwargs) if webui_inpaint_enabled: with gr.Tab("Inpainting webui", elem_id="webui_inpainting_tab"): with gr.Row(): with gr.Column(): webui_prompt = gr.Textbox(label="Inpainting Prompt", elem_id="ia_webui_sd_prompt") webui_n_prompt = gr.Textbox(label="Negative Prompt", elem_id="ia_webui_sd_n_prompt") with gr.Column(scale=0, min_width=128): gr.Markdown("Get prompt from:") webui_get_txt2img_prompt_btn = gr.Button("txt2img", elem_id="webui_get_txt2img_prompt_btn") webui_get_img2img_prompt_btn = gr.Button("img2img", elem_id="webui_get_img2img_prompt_btn") with gr.Accordion("Advanced options", elem_id="webui_advanced_options", open=False): webui_mask_blur = gr.Slider(label="Mask blur", minimum=0, maximum=64, step=1, value=4, elem_id="webui_mask_blur") webui_fill_mode = gr.Radio(label="Masked content", elem_id="webui_fill_mode", choices=["fill", "original", "latent noise", "latent nothing"], value="original", type="index") with gr.Row(): with gr.Column(): webui_sampler_id = gr.Dropdown(label="Sampling method webui", elem_id="webui_sampler_id", choices=webui_sampler_ids, value=webui_sampler_ids[webui_sampler_index], show_label=True) with gr.Column(): webui_ddim_steps = gr.Slider(label="Sampling steps webui", elem_id="webui_ddim_steps", minimum=1, maximum=150, value=30, step=1) webui_cfg_scale = gr.Slider(label="Guidance scale webui", elem_id="webui_cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) webui_strength = gr.Slider(label="Denoising strength webui", elem_id="webui_strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01) webui_seed = gr.Slider( label="Seed", elem_id="webui_sd_seed", minimum=-1, maximum=2147483647, step=1, value=-1, ) if ia_check_versions.webui_refiner_is_available: with gr.Accordion("Refiner options", elem_id="webui_refiner_options", open=False): with gr.Row(): webui_enable_refiner_chk = gr.Checkbox(label="Enable Refiner", elem_id="webui_enable_refiner_chk", value=False, show_label=True, interactive=True) with gr.Row(): webui_refiner_checkpoint = gr.Dropdown(label="Refiner Model ID", elem_id="webui_refiner_checkpoint", choices=shared.list_checkpoint_tiles(), value="") webui_refiner_switch_at = gr.Slider(value=0.8, label="Switch at", minimum=0.01, maximum=1.0, step=0.01, elem_id="webui_refiner_switch_at") with gr.Row(): with gr.Column(): webui_model_id = gr.Dropdown(label="Inpainting Model ID webui", elem_id="webui_model_id", choices=webui_model_ids, value=webui_model_ids[webui_model_index], show_label=True) with gr.Column(): with gr.Row(): webui_inpaint_btn = gr.Button("Run Inpainting", elem_id="webui_inpaint_btn", variant="primary") with gr.Row(): webui_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="webui_save_mask_chk", value=False, show_label=False, interactive=False, visible=False) webui_iteration_count = gr.Slider(label="Iterations", elem_id="webui_iteration_count", minimum=1, maximum=10, value=1, step=1) with gr.Row(): if ia_check_versions.gradio_version_is_old: webui_out_image = gr.Gallery(label="Inpainted image", elem_id="ia_webui_out_image", show_label=False ).style(**out_gallery_kwargs) else: webui_out_image = gr.Gallery(label="Inpainted image", elem_id="ia_webui_out_image", show_label=False, **out_gallery_kwargs) with gr.Tab("ControlNet Inpaint", elem_id="cn_inpaint_tab"): if cn_enabled: with gr.Row(): with gr.Column(): cn_prompt = gr.Textbox(label="Inpainting Prompt", elem_id="ia_cn_sd_prompt") cn_n_prompt = gr.Textbox(label="Negative Prompt", elem_id="ia_cn_sd_n_prompt") with gr.Column(scale=0, min_width=128): gr.Markdown("Get prompt from:") cn_get_txt2img_prompt_btn = gr.Button("txt2img", elem_id="cn_get_txt2img_prompt_btn") cn_get_img2img_prompt_btn = gr.Button("img2img", elem_id="cn_get_img2img_prompt_btn") with gr.Accordion("Advanced options", elem_id="cn_advanced_options", open=False): with gr.Row(): with gr.Column(): cn_sampler_id = gr.Dropdown(label="Sampling method", elem_id="cn_sampler_id", choices=cn_sampler_ids, value=cn_sampler_ids[cn_sampler_index], show_label=True) with gr.Column(): cn_ddim_steps = gr.Slider(label="Sampling steps", elem_id="cn_ddim_steps", minimum=1, maximum=150, value=30, step=1) cn_cfg_scale = gr.Slider(label="Guidance scale", elem_id="cn_cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) cn_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.75, elem_id="cn_strength") cn_seed = gr.Slider( label="Seed", elem_id="cn_sd_seed", minimum=-1, maximum=2147483647, step=1, value=-1, ) with gr.Accordion("ControlNet options", elem_id="cn_cn_options", open=False): with gr.Row(): with gr.Column(): cn_low_vram_chk = gr.Checkbox(label="Low VRAM", elem_id="cn_low_vram_chk", value=True, show_label=True, interactive=True) cn_weight = gr.Slider(label="Control Weight", elem_id="cn_weight", minimum=0.0, maximum=2.0, value=1.0, step=0.05) with gr.Column(): cn_mode = gr.Dropdown(label="Control Mode", elem_id="cn_mode", choices=cn_modes, value=cn_modes[-1], show_label=True) if cn_ref_only: with gr.Row(): with gr.Column(): cn_md_text = "Reference Control (enabled with image below)" if not cn_ip_adapter: cn_md_text = cn_md_text + ("
" "[IP-Adapter](https://huggingface.co/lllyasviel/sd_control_collection/tree/main) " "is not available. Reference-Only is used.") gr.Markdown(cn_md_text) if cn_ip_adapter: cn_ipa_or_ref = gr.Radio(label="IP-Adapter or Reference-Only", elem_id="cn_ipa_or_ref", choices=["IP-Adapter", "Reference-Only"], value="IP-Adapter", show_label=False) cn_ref_image = gr.Image(label="Reference Image", elem_id="cn_ref_image", source="upload", type="numpy", interactive=True) with gr.Column(): cn_ref_resize_mode = gr.Radio(label="Reference Image Resize Mode", elem_id="cn_ref_resize_mode", choices=["resize", "tile"], value="resize", show_label=True) if cn_ip_adapter: cn_ipa_model_id = gr.Dropdown(label="IP-Adapter Model ID", elem_id="cn_ipa_model_id", choices=cn_ipa_model_ids, value=cn_ipa_model_ids[0], show_label=True) cn_ref_module_id = gr.Dropdown(label="Reference Type for Reference-Only", elem_id="cn_ref_module_id", choices=cn_ref_module_ids, value=cn_ref_module_ids[-1], show_label=True) cn_ref_weight = gr.Slider(label="Reference Control Weight", elem_id="cn_ref_weight", minimum=0.0, maximum=2.0, value=1.0, step=0.05) cn_ref_mode = gr.Dropdown(label="Reference Control Mode", elem_id="cn_ref_mode", choices=cn_modes, value=cn_modes[0], show_label=True) else: with gr.Row(): gr.Markdown("The Multi ControlNet setting is currently set to 1.
" "If you wish to use the Reference-Only Control, " "please adjust the Multi ControlNet setting to 2 or more and restart the Web UI.") with gr.Row(): with gr.Column(): cn_module_id = gr.Dropdown(label="ControlNet Preprocessor", elem_id="cn_module_id", choices=cn_module_ids, value=cn_module_ids[cn_module_index], show_label=True) cn_model_id = gr.Dropdown(label="ControlNet Model ID", elem_id="cn_model_id", choices=cn_model_ids, value=cn_model_ids[0], show_label=True) with gr.Column(): with gr.Row(): cn_inpaint_btn = gr.Button("Run ControlNet Inpaint", elem_id="cn_inpaint_btn", variant="primary") with gr.Row(): cn_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="cn_save_mask_chk", value=False, show_label=False, interactive=False, visible=False) cn_iteration_count = gr.Slider(label="Iterations", elem_id="cn_iteration_count", minimum=1, maximum=10, value=1, step=1) with gr.Row(): if ia_check_versions.gradio_version_is_old: cn_out_image = gr.Gallery(label="Inpainted image", elem_id="ia_cn_out_image", show_label=False ).style(**out_gallery_kwargs) else: cn_out_image = gr.Gallery(label="Inpainted image", elem_id="ia_cn_out_image", show_label=False, **out_gallery_kwargs) else: if sam_dict["cnet"] is None: gr.Markdown("ControlNet extension is not available.
" "Requires the [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) extension.") elif len(cn_module_ids) > 0: cn_models_directory = os.path.join("extensions", "sd-webui-controlnet", "models") gr.Markdown("ControlNet inpaint model is not available.
" "Requires the [ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main) inpaint model " f"in the {cn_models_directory} directory.") else: gr.Markdown("ControlNet inpaint preprocessor is not available.
" "The local version of [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) extension may be old.") with gr.Tab("Mask only", elem_id="mask_only_tab"): with gr.Row(): with gr.Column(): get_alpha_image_btn = gr.Button("Get mask as alpha of image", elem_id="get_alpha_image_btn") with gr.Column(): get_mask_btn = gr.Button("Get mask", elem_id="get_mask_btn") with gr.Row(): with gr.Column(): alpha_out_image = gr.Image(label="Alpha channel image", elem_id="alpha_out_image", type="pil", image_mode="RGBA", interactive=False) with gr.Column(): mask_out_image = gr.Image(label="Mask image", elem_id="mask_out_image", type="numpy", interactive=False) with gr.Row(): with gr.Column(): get_alpha_status_text = gr.Textbox(label="", elem_id="get_alpha_status_text", max_lines=1, show_label=False, interactive=False) with gr.Column(): mask_send_to_inpaint_btn = gr.Button("Send to img2img inpaint", elem_id="mask_send_to_inpaint_btn") with gr.Column(): with gr.Row(): gr.Markdown("Mouse over image: Press `S` key for Fullscreen mode, `R` key to Reset zoom") with gr.Row(): if ia_check_versions.gradio_version_is_old: sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8, show_label=False, interactive=True).style(height=480) else: sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8, show_label=False, interactive=True, height=480) with gr.Row(): with gr.Column(): select_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary") with gr.Column(): with gr.Row(): invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, interactive=True) ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True) with gr.Row(): if ia_check_versions.gradio_version_is_old: sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12, show_label=False, interactive=True).style(height=480) else: sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12, show_label=False, interactive=True, height=480) with gr.Row(): with gr.Column(): expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn") expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations", elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1) with gr.Column(): apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn") add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn") load_model_btn.click(download_model, inputs=[sam_model_id], outputs=[status_text]) input_image.upload(input_image_upload, inputs=[input_image, sam_image, sel_mask], outputs=[sam_image, sel_mask, sam_btn]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_initSamSelMask") padding_btn.click(run_padding, inputs=[input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode], outputs=[input_image, status_text]) sam_btn.click(run_sam, inputs=[input_image, sam_model_id, sam_image, anime_style_chk], outputs=[sam_image, status_text]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSamMask") select_btn.click(select_mask, inputs=[input_image, sam_image, invert_chk, ignore_black_chk, sel_mask], outputs=[sel_mask]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then( fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") get_txt2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_getTxt2imgPrompt") get_img2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_getImg2imgPrompt") inpaint_btn.click( run_inpaint, inputs=[input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk, sampler_name, iteration_count], outputs=[out_image, iteration_count]) cleaner_btn.click( run_cleaner, inputs=[input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk], outputs=[cleaner_out_image]) get_alpha_image_btn.click( run_get_alpha_image, inputs=[input_image, sel_mask], outputs=[alpha_out_image, get_alpha_status_text]) get_mask_btn.click( run_get_mask, inputs=[sel_mask], outputs=[mask_out_image]) mask_send_to_inpaint_btn.click( fn=None, _js="inpaintAnything_sendToInpaint", inputs=None, outputs=None) if cn_enabled: cn_get_txt2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_cnGetTxt2imgPrompt") cn_get_img2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_cnGetImg2imgPrompt") if cn_enabled: cn_inputs = [input_image, sel_mask, cn_prompt, cn_n_prompt, cn_sampler_id, cn_ddim_steps, cn_cfg_scale, cn_strength, cn_seed, cn_module_id, cn_model_id, cn_save_mask_chk, cn_low_vram_chk, cn_weight, cn_mode, cn_iteration_count] if cn_ref_only: cn_inputs.extend([cn_ref_module_id, cn_ref_image, cn_ref_weight, cn_ref_mode, cn_ref_resize_mode]) if cn_ip_adapter: cn_inputs.extend([cn_ipa_or_ref, cn_ipa_model_id]) cn_inpaint_btn.click( run_cn_inpaint, inputs=cn_inputs, outputs=[cn_out_image, cn_iteration_count]).then( fn=async_post_reload_model_weights, inputs=None, outputs=None) if webui_inpaint_enabled: webui_get_txt2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_webuiGetTxt2imgPrompt") webui_get_img2img_prompt_btn.click( fn=None, inputs=None, outputs=None, _js="inpaintAnything_webuiGetImg2imgPrompt") wi_inputs = [input_image, sel_mask, webui_prompt, webui_n_prompt, webui_sampler_id, webui_ddim_steps, webui_cfg_scale, webui_strength, webui_seed, webui_model_id, webui_save_mask_chk, webui_mask_blur, webui_fill_mode, webui_iteration_count] if ia_check_versions.webui_refiner_is_available: wi_inputs.extend([webui_enable_refiner_chk, webui_refiner_checkpoint, webui_refiner_switch_at]) webui_inpaint_btn.click( run_webui_inpaint, inputs=wi_inputs, outputs=[webui_out_image, webui_iteration_count]).then( fn=async_post_reload_model_weights, inputs=None, outputs=None) return [(inpaint_anything_interface, "Inpaint Anything", "inpaint_anything")] def on_ui_settings(): section = ("inpaint_anything", "Inpaint Anything") shared.opts.add_option("inpaint_anything_save_folder", shared.OptionInfo( default="inpaint-anything", label="Folder name where output images will be saved", component=gr.Radio, component_args={"choices": ["inpaint-anything", "img2img-images (img2img output setting of web UI)"]}, section=section)) shared.opts.add_option("inpaint_anything_sam_oncpu", shared.OptionInfo( default=False, label="Run Segment Anything on CPU", component=gr.Checkbox, component_args={"interactive": True}, section=section)) shared.opts.add_option("inpaint_anything_offline_inpainting", shared.OptionInfo( default=False, label="Run Inpainting on offline network (Models not auto-downloaded)", component=gr.Checkbox, component_args={"interactive": True}, section=section)) shared.opts.add_option("inpaint_anything_padding_fill", shared.OptionInfo( default=127, label="Fill value used when Padding is set to constant", component=gr.Slider, component_args={"minimum": 0, "maximum": 255, "step": 1}, section=section)) shared.opts.add_option("inpain_anything_sam_models_dir", shared.OptionInfo( default="", label="Segment Anything Models Directory; If empty, defaults to [Inpaint Anything extension folder]/models", component=gr.Textbox, component_args={"interactive": True}, section=section)) script_callbacks.on_ui_settings(on_ui_settings) script_callbacks.on_ui_tabs(on_ui_tabs)