ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
import gc
import hashlib
import json
import math
import os
import sys
import traceback
from io import BytesIO
import gradio as gr
import launch
import modules.shared as shared
import numpy as np
import safetensors.torch
import scripts.mergers.components as components
import torch
from modules import extra_networks, scripts, sd_models, lowvram
from modules.ui import create_refresh_button
from safetensors.torch import load_file, save_file
from scripts.kohyas import extract_lora_from_models as ext
from scripts.kohyas import lora as klora
from scripts.mergers.model_util import (filenamecutter, savemodel)
from scripts.mergers.mergers import extract_super, unload_forge
from tqdm import tqdm
selectable = []
pchanged = False
try:
from ldm_patched.modules import model_management
forge = True
except:
forge = False
BLOCKID26=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
BLOCKID17=["BASE","IN01","IN02","IN04","IN05","IN07","IN08","M00","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
BLOCKID12=["BASE","IN04","IN05","IN07","IN08","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05"]
BLOCKID20=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08"]
BLOCKNUMS = [12,17,20,26]
BLOCKIDS=[BLOCKID12,BLOCKID17,BLOCKID20,BLOCKID26]
def to26(ratios):
if len(ratios) == 26: return ratios
ids = BLOCKIDS[BLOCKNUMS.index(len(ratios))]
output = [0]*26
for i, id in enumerate(ids):
output[BLOCKID26.index(id)] = ratios[i]
return output
def f_changediffusers(version):
launch.run_pip(f"install diffusers=={version}", f"diffusers ver {version}")
def on_ui_tabs():
import lora
global selectable
selectable = [x[0] for x in lora.available_loras.items()]
sml_path_root = scripts.basedir()
LWEIGHTSPRESETS="\
NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
ALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\n\
INS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
IND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
INALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
MIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\n\
OUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\n\
OUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\n\
OUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\n\
ALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
lbwpath = os.path.join(sml_path_root,"scripts", "lbwpresets.txt")
lbwpathn = os.path.join(sml_path_root,"extensions","sd-webui-lora-block-weight","scripts", "lbwpresets.txt")
sml_lbwpresets=""
if os.path.isfile(lbwpath):
with open(lbwpath,encoding="utf-8") as f:
sml_lbwpresets = f.read()
elif os.path.isfile(lbwpathn):
with open(lbwpathn,encoding="utf-8") as f:
sml_lbwpresets = f.read()
else:
sml_lbwpresets=LWEIGHTSPRESETS
try:
import diffusers
d_ver = diffusers.__version__
except:
d_ver = None
with gr.Blocks(analytics_enabled=False) :
sml_submit_result = gr.Textbox(label="Message")
with gr.Row(equal_height=False):
with gr.Column(equal_height=False):
sml_cpmerge = gr.Button(elem_id="model_merger_merge", value="Merge to Checkpoint",variant='primary')
sml_merge = gr.Button(elem_id="model_merger_merge", value="Merge LoRAs",variant='primary')
with gr.Row(equal_height=False):
sml_settings = gr.CheckboxGroup(["same to Strength", "overwrite"], label="settings")
sml_filename = gr.Textbox(label="filename(option)",lines=1,visible =True,interactive = True)
sml_metasettings = gr.Radio(value = "create new",choices = ["create new","create new without output_name", "merge","save all", "use first lora"], label="metadata")
with gr.Row(equal_height=False):
save_precision = gr.Radio(label = "save precision",choices=["float","fp16","bf16"],value = "fp16",type="value")
calc_precision = gr.Radio(label = "calc precision(fp16:cuda only)" ,choices=["float","fp16","bf16"],value = "float",type="value")
device = gr.Radio(label = "device",choices=["cuda","cpu"],value = "cuda",type="value")
with gr.Column(equal_height=False):
sml_makelora = gr.Button(elem_id="model_merger_merge", value="Make LoRA (alpha * Tuned - beta * Original)",variant='primary')
sml_extract = gr.Button(elem_id="model_merger_merge", value="Extract from two LoRAs",variant='primary')
with gr.Row(equal_height=False):
sml_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint Tuned",interactive=True)
create_refresh_button(sml_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
with gr.Row(equal_height=False):
sml_model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint Original",interactive=True)
create_refresh_button(sml_model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
with gr.Row(equal_height=False):
alpha = gr.Slider(label="alpha", minimum=-1.0, maximum=2, step=0.001, value=1)
beta = gr.Slider(label="beta", minimum=-1.0, maximum=2, step=0.001, value=1)
smooth = gr.Slider(label="gamma(smooth)", minimum=-1, maximum=20, step=0.1, value=1)
sml_dim = gr.Radio(label = "remake dimension",choices = ["no","auto",4,8,16,32,64,128,256,512,768,1024],value = "no",type = "value")
sml_loranames = gr.Textbox(label='LoRAname1:ratio1:Blocks1,LoRAname2:ratio2:Blocks2,...(":blocks" is option, not necessary)',lines=1,value="",visible =True)
sml_dims = gr.CheckboxGroup(label = "limit dimension",choices=[],value = [],type="value",interactive=True,visible = False)
with gr.Row(equal_height=False):
sml_calcdim = gr.Button(elem_id="calcloras", value="Calculate LoRA dimensions (this may take time for multiple LoRAs)",variant='primary')
sml_update = gr.Button(elem_id="calcloras", value="update list",variant='primary')
sml_lratio = gr.Slider(label="default LoRA multiplier", minimum=-1.0, maximum=2, step=0.1, value=1)
with gr.Row():
sml_selectall = gr.Button(elem_id="sml_selectall", value="select all",variant='primary')
sml_deselectall = gr.Button(elem_id="slm_deselectall", value="deselect all",variant='primary')
components.frompromptb = gr.Button(elem_id="slm_deselectall", value="get from prompt",variant='primary')
hidenb = gr.Checkbox(value = False,visible = False)
sml_loras = gr.CheckboxGroup(label = "LoRAs on disk",choices = selectable,type="value",interactive=True,visible = True)
sml_loraratios = gr.TextArea(label="",value=sml_lbwpresets,visible =True,interactive = True)
sml_selectall.click(fn = lambda x:gr.update(value = selectable),outputs = [sml_loras])
sml_deselectall.click(fn = lambda x:gr.update(value =[]),outputs = [sml_loras])
with gr.Row():
changediffusers = gr.Button(elem_id=f"change_diffusers_version", value=f"change diffusers version(now:{d_ver})",variant='primary')
dversion = gr.Textbox(label="diffusers version",lines=1,visible =True,interactive = True)
components.sml_loranames = [sml_loras, sml_loranames, hidenb]
changediffusers.click(
fn=f_changediffusers,
inputs=[dversion],
outputs=[sml_submit_result]
)
sml_merge.click(
fn=lmerge,
inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_dim,save_precision,calc_precision,sml_metasettings,alpha,beta,smooth,gr.Checkbox(value = True,visible = False),device],
outputs=[sml_submit_result]
)
sml_extract.click(
fn=lmerge,
inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_dim,save_precision,calc_precision,sml_metasettings,alpha,beta,smooth,gr.Checkbox(value = False,visible = False),device],
outputs=[sml_submit_result]
)
sml_makelora.click(
fn=makelora,
inputs=[sml_model_a,sml_model_b,sml_dim,sml_filename,sml_settings,alpha,beta,save_precision,calc_precision,sml_metasettings,device],
outputs=[sml_submit_result]
)
sml_cpmerge.click(
fn=pluslora,
inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_model_a,save_precision,calc_precision,sml_metasettings,device],
outputs=[sml_submit_result]
)
llist ={}
dlist =[]
dn = []
def updateloras():
lora.list_available_loras()
names = []
dels = []
for n in lora.available_loras.items():
if n[0] not in llist:llist[n[0]] = ""
names.append(n[0])
for l in list(llist.keys()):
if l not in names:llist.pop(l)
global selectable
selectable = [f"{x[0]}({x[1]})" for x in llist.items()]
return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])
sml_update.click(fn = updateloras,outputs = [sml_loras])
def calculatedim():
print("listing dimensions...")
for n in tqdm(lora.available_loras.items()):
if n[0] in llist:
if llist[n[0]] !="": continue
c_lora = lora.available_loras.get(n[0], None)
d,t,s = dimgetter(c_lora.filename)
if t == "LoCon":
if len(list(set(d.values()))) > 1:
d = "multi dim"
else:
d = f"{list(set(d.values()))}"
d = f"{d}:{t}"
if s =="XL":
if len(list(set(d.values()))) > 1:
d = "multi dim"
else:
d = f"{list(set(d.values()))}"
d = f"{d}:XL"
if d not in dlist:
if type(d) == int :dlist.append(d)
elif d not in dn: dn.append(d)
llist[n[0]] = d
dlist.sort()
global selectable
selectable = [f"{x[0]}({x[1]})" for x in llist.items()]
return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()],value =[]),gr.update(visible =True,choices = [x for x in (dlist+dn)])
sml_calcdim.click(
fn=calculatedim,
inputs=[],
outputs=[sml_loras,sml_dims]
)
def dimselector(dims):
if dims ==[]:return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])
rl=[]
for d in dims:
for i in llist.items():
if d == i[1]:rl.append(f"{i[0]}({i[1]})")
global selectable
selectable = rl.copy()
return gr.update(choices = [l for l in rl],value =[])
def llister(names,ratio, hiden):
if hiden:return gr.update()
if names ==[] : return ""
else:
for i,n in enumerate(names):
if "(" in n:names[i] = n[:n.rfind("(")]
return f":{ratio},".join(names)+f":{ratio} "
hidenb.change(fn=lambda x: False, outputs = [hidenb])
sml_loras.change(fn=llister,inputs=[sml_loras,sml_lratio, hidenb],outputs=[sml_loranames])
sml_dims.change(fn=dimselector,inputs=[sml_dims],outputs=[sml_loras])
##############################################################
####### make LoRA from checkpoint
def makelora(model_a,model_b,dim,saveto,settings,alpha,beta,save_precision,calc_precision,metasets,device):
print("make LoRA start")
if model_a == "" or model_b =="":
return "ERROR: No model Selected"
gc.collect()
currentinfo = shared.sd_model.sd_checkpoint_info
checkpoint_info = sd_models.get_closet_checkpoint_match(model_a)
sd_models.load_model(checkpoint_info)
model = shared.sd_model
is_sdxl = hasattr(model, 'conditioner')
is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
is_sd1 = not model.is_sdxl and not model.is_sd2
print(f"Detected model type: SDXL: {is_sdxl}, SD2.X: {is_sd2}, SD1.X: {is_sd1}")
if forge:
unload_forge()
else:
sd_models.unload_model_weights()
if saveto =="" : saveto = makeloraname(model_a,model_b)
if not ".safetensors" in saveto :saveto += ".safetensors"
saveto = os.path.join(shared.cmd_opts.lora_dir,saveto)
dim = 128 if type(dim) != int else int(dim)
if os.path.isfile(saveto ) and not "overwrite" in settings:
_err_msg = f"Output file ({saveto}) existed and was not saved"
print(_err_msg)
return _err_msg
args = Kohya_extract_args(
v2=is_sd2,
v_parameterization=True,
sdxl=is_sdxl,
save_precision=save_precision,
model_org=fullpathfromname(model_b),
model_tuned=fullpathfromname(model_a),
save_to=saveto,
dim=dim,
conv_dim=None,
device=device,
no_metadata=False,
alpha = alpha,
beta = beta
)
result = ext.svd(args)
sd_models.load_model(currentinfo)
return result
##############################################################
####### merge LoRAs
def lmerge(loranames,loraratioss,settings,filename,dim,save_precision,calc_precision,metasets,alpha,beta,smooth,merge,device):
try:
import lora
loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]
if any([x is None for x in loras_on_disk]):
lora.list_available_loras()
loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]
lnames = loranames.split(",")
#LoRAname1:ratio1:Blocks1,LoRAname2:ratio2:Blocks2,.
#LoRAname1:ratio1:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,LoRAname2:ratio2:Blocks2,.
temp = []
for n in lnames:
if ":" in n:
temp.append(n.split(":"))
else:
temp[-1].append(n)
lnames = temp
loraratios=loraratioss.splitlines()
ldict ={}
for i,l in enumerate(loraratios):
if ":" not in l or not any(l.count(",") == x - 1 for x in BLOCKNUMS) : continue
ldict[l.split(":")[0]]=l.split(":")[1]
ln, lr, ld, lt, lm, ls = [], [], [], [], [], [] #lm: 各LoRAのマージ用メタデータ #ls: SD-?
dmax = 1
for i,n in enumerate(lnames):
if len(n) ==2:
ratio = [float(n[1])]*26
elif len(n) ==3:
if n[2].strip() in ldict:
ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
ratio = to26(ratio)
else:ratio = [float(n[1])]*26
elif len(n[2:]) in BLOCKNUMS:
ratio = [float(x) for x in n[2:]]
ratio = to26(ratio)
else:
print("ERROR:Number of Blocks must be 12,17,20,26")
ratio = [float(n[1])]*26
c_lora = lora.available_loras.get(n[0], None)
ln.append(c_lora.filename)
lr.append(ratio)
d, t, s = dimgetter(c_lora.filename)
if t == "LoCon":
d = list(set(d.values()))
d = d[0]
lt.append(t)
ld.append(d)
ls.append(s)
if d != "LyCORIS" and type(d) == int:
if d > dmax : dmax = d
# LoRA毎のメタデータを保存
meta = prepare_merge_metadata( n[1], ",".join( [str(n) for n in ratio] ), c_lora )
lm.append( meta )
if filename =="":filename =loranames.replace(",","+").replace(":","_")
if not ".safetensors" in filename:filename += ".safetensors"
loraname = filename.replace(".safetensors", "")
filename = os.path.join(shared.cmd_opts.lora_dir,filename)
auto = True if dim == "auto" else False
dim = int(dim) if dim != "no" and dim != "auto" else 0
if merge:
if "LyCORIS" in ld:
if len(ld) !=1:
return "multiple merge of LyCORIS is not supported"
sd = lycomerge(ln[0], lr[0], calc_precision)
elif dim > 0:
print("change demension to ", dim)
sd = merge_lora_models_dim(ln, lr, dim,settings,device,calc_precision)
elif auto and ld.count(ld[0]) != len(ld):
print("change demension to ",dmax)
sd = merge_lora_models_dim(ln, lr, dmax,settings,device,calc_precision)
else:
sd = merge_lora_models(ln, lr, settings, False, calc_precision)
if os.path.isfile(filename) and not "overwrite" in settings:
_err_msg = f"Output file ({filename}) existed and was not saved"
print(_err_msg)
return _err_msg
else:
a = merge_lora_models(ln[0:1], lr[0:1], settings, False, calc_precision)
b = merge_lora_models(ln[1:2], lr[1:2], settings, False, calc_precision)
sd = extract_two(a,b,alpha,beta,smooth)
# マージ後のメタデータを取得
metadata = create_merge_metadata( sd, lm, loraname, save_precision,metasets )
save_to_file(filename,sd,sd, str_to_dtype(save_precision), metadata)
sd = None
del sd
gc.collect()
torch.cuda.empty_cache()
return "saved : "+filename
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
traceback.print_exc()
return exc_value
def merge_lora_models(models, ratios, sets, locon, calc_precision):
base_alphas = {} # alpha for merged model
base_dims = {}
merge_dtype = str_to_dtype(calc_precision)
merged_sd = {}
fugou = 1
for model, ratios in zip(models, ratios):
keylist = LBLCOKS26
print(f"merging {model}: {ratios}")
lora_sd, metadata, isv2 = load_state_dict(model, merge_dtype)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
base_dims, base_alphas, dims, alphas = dimalpha(lora_sd, base_dims, base_alphas)
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
print(f"merging...")
for key in lora_sd.keys():
if 'alpha' in key:
continue
lora_module_name = key[:key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
ratio = ratios[blockfromkey(key, keylist, isv2)]
if "same to Strength" in sets:
ratio, fugou = (ratio ** 0.5, 1) if ratio > 0 else (abs(ratio) ** 0.5, -1)
if "lora_down" in key:
ratio = ratio * fugou
scale = math.sqrt(alpha / base_alpha) * ratio
if key in merged_sd:
assert merged_sd[key].size() == lora_sd[key].size(), (
f"weights shape mismatch merging v1 and v2, different dims? "
f"/ 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
f" {merged_sd[key].size()} ,{lora_sd[key].size()}, {lora_module_name}"
)
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
del lora_sd
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
print("merged model")
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
return merged_sd
def merge_lora_models_dim(models, ratios, new_rank, sets, device, calc_precision):
merged_sd = {}
fugou = 1
isv2 = False
merge_dtype = str_to_dtype(calc_precision)
for model, ratios in zip(models, ratios):
lora_sd, medadata, isv2 = load_state_dict(model, merge_dtype, device)
# merge
print(f"merging {model}: {ratios}")
for key in tqdm(list(lora_sd.keys())):
if 'lora_down' not in key:
continue
lora_module_name = key[:key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + '.lora_up.weight']
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
# print(lora_module_name, network_dim, alpha, in_dim, out_dim)
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, 1, 1) if conv2d else (out_dim, in_dim), dtype=merge_dtype, device=device)
else:
weight = merged_sd[lora_module_name]
ratio = ratios[blockfromkey(key, LBLCOKS26,isv2)]
if "same to Strength" in sets:
ratio, fugou = (ratio ** 0.5, 1) if ratio > 0 else (abs(ratio) ** 0.5, -1)
# print(lora_module_name, ratio)
# W <- W + U * D
scale = (alpha / network_dim)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale * fugou
else:
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale * fugou
merged_sd[lora_module_name] = weight
lora_sd = None
del lora_sd
torch.cuda.empty_cache()
for key in merged_sd.keys():
merged_sd[key] = merged_sd[key].to(torch.float)
# extract from merged weights
print("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
conv2d = (len(mat.size()) == 4)
if conv2d:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :new_rank]
S = S[:new_rank]
U = U @ torch.diag(S)
Vh = Vh[:new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
up_weight = U
down_weight = Vh
if conv2d:
up_weight = up_weight.unsqueeze(2).unsqueeze(3)
down_weight = down_weight.unsqueeze(2).unsqueeze(3)
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(new_rank)
del merged_sd
gc.collect()
torch.cuda.empty_cache()
return merged_lora_sd
def extract_two(a,b,pa,pb,ps):
base_alphas = {} # alpha for merged model
base_dims = {}
merged_sd = {}
alphas = {} # alpha for current model
dims = {} # dims for current model
base_dims_a, base_alphas_a, dims, alphas_a = dimalpha(a, base_dims, base_alphas)
base_dims_b, base_alphas_b, dims, alphas_b = dimalpha(b, base_dims, base_alphas)
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
print(f"merging...")
for key in a.keys():
if 'alpha' in key:
continue
lora_module_name = key[:key.rfind(".lora_")]
base_alpha_a = base_alphas_a[lora_module_name]
base_alpha_b = base_alphas_b[lora_module_name]
alpha_a = alphas_a[lora_module_name]
alpha_b = alphas_b[lora_module_name]
scale_a = math.sqrt(alpha_a / base_alpha_a)
scale_b = math.sqrt(alpha_b / base_alpha_b)
merged_sd[key] = extract_super(None,a[key] * scale_a,b[key] * scale_b,pa,pb,ps)
merged_sd[key] = merged_sd[key] + a[key] * scale_a
merged_sd[key] = a[key] * scale_a
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
print("merged model")
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
return merged_sd
def lycomerge(filename,ratios,calc_precision):
merge_dtype = str_to_dtype(calc_precision)
sd, metadata, isv2 = load_state_dict(filename, merge_dtype)
if len(ratios) == 17:
r0 = 1
ratios = [ratios[0]] + [r0] + ratios[1:3]+ [r0] + ratios[3:5]+[r0] + ratios[5:7]+[r0,r0,r0] + [ratios[7]] + [r0,r0,r0] + ratios[8:]
print("LyCORIS: " , ratios)
keys_failed_to_match = []
for lkey, weight in sd.items():
ratio = 1
picked = False
if 'alpha' in lkey:
continue
try:
import networks as lora
except:
import lora as lora
fullkey = lora.convert_diffusers_name_to_compvis(lkey,isv2)
if "." not in fullkey:continue
key, lora_key = fullkey.split(".", 1)
for i,block in enumerate(LBLCOKS26):
if block in key:
ratio = ratios[i]
picked = True
if not picked: keys_failed_to_match.append(key)
sd[lkey] = weight * math.sqrt(abs(float(ratio)))
if "down" in lkey and ratio < 0:
sd[key] = sd[key] * -1
if len(keys_failed_to_match) > 0:
print(keys_failed_to_match)
return sd
##############################################################
####### merge to checkpoint
def pluslora(lnames,loraratios,settings,output,model,save_precision,calc_precision,metasets,device):
if model == []: return "ERROR: No model Selected"
if lnames == "":return "ERROR: No LoRA Selected"
add = ""
print("Plus LoRA start")
import lora
lnames = lnames.split(",")
for i, n in enumerate(lnames):
lnames[i] = n.split(":")
loraratios=loraratios.splitlines()
ldict ={}
for i,l in enumerate(loraratios):
if ":" not in l or not any(l.count(",") == x - 1 for x in BLOCKNUMS) : continue
ldict[l.split(":")[0].strip()]=l.split(":")[1]
names, filenames, loratypes, lweis = [], [], [], []
for n in lnames:
if len(n) ==3:
if n[2].strip() in ldict:
ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
ratio = to26(ratio)
else:ratio = [float(n[1])]*26
else:ratio = [float(n[1])]*26
c_lora = lora.available_loras.get(n[0], None)
names.append(n[0])
filenames.append(c_lora.filename)
lweis.append(ratio)
modeln=filenamecutter(model,True)
dname = modeln
for n in names:
dname = dname + "+"+n
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
print(f"Loading {model}")
theta_0 = sd_models.read_state_dict(checkpoint_info.filename,map_location=device)
isxl = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.weight" in theta_0.keys()
isv2 = "cond_stage_model.model.transformer.resblocks.0.attn.out_proj.weight" in theta_0.keys()
try:
import networks
is15 = True
except:
is15 = False
keychanger = {}
for key in theta_0.keys():
if "model" in key:
skey = key.replace(".","_").replace("_weight","")
if "conditioner_embedders_" in skey:
keychanger[skey.split("conditioner_embedders_",1)[1]] = key
else:
if "wrapped" in skey:
keychanger[skey.split("wrapped_",1)[1]] = key
else:
keychanger[skey.split("model_",1)[1]] = key
if is15:
if shared.sd_model is not None:
orig_checkpoint = shared.sd_model.sd_checkpoint_info
else:
orig_checkpoint = None
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
if orig_checkpoint != checkpoint_info:
sd_models.reload_model_weights(info=checkpoint_info)
theta_0 = newpluslora(theta_0,filenames,lweis,names, isxl,isv2, keychanger)
if orig_checkpoint:
sd_models.reload_model_weights(info=orig_checkpoint)
else:
for name,filename, lwei in zip(names,filenames, lweis):
print(f"loading: {name}")
lora_sd, metadata, isv2 = load_state_dict(filename, torch.float)
print(f"merging..." ,lwei)
for key in lora_sd.keys():
ratio = 1
import lora
fullkey = lora.convert_diffusers_name_to_compvis(key,isv2)
msd_key, _ = fullkey.split(".", 1)
if isxl:
if "lora_unet" in msd_key:
msd_key = msd_key.replace("lora_unet", "diffusion_model")
elif "lora_te1_text_model" in msd_key:
msd_key = msd_key.replace("lora_te1_text_model", "0_transformer_text_model")
for i,block in enumerate(LBLCOKS26):
if block in fullkey or block in msd_key:
ratio = lwei[i]
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[:key.index("lora_down")] + 'alpha'
# print(f"apply {key} to {module}")
down_weight = lora_sd[key].to(device="cpu")
up_weight = lora_sd[up_key].to(device="cpu")
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = theta_0[keychanger[msd_key]].to(device="cpu")
if len(weight.size()) == 2:
# linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + ratio * conved * scale
theta_0[keychanger[msd_key]] = torch.nn.Parameter(weight)
#usemodelgen(theta_0,model)
settings.append(save_precision)
settings.append("safetensors")
result = savemodel(theta_0,dname,output,settings)
del theta_0
gc.collect()
return result + add
def newpluslora(theta_0,filenames,lweis,names, isxl,isv2, keychanger):
import networks as nets
nets.load_networks(names)
for l, loaded in enumerate(nets.loaded_networks):
for n, name in enumerate(names):
changed = False
if name == loaded.name:
lbw(nets.loaded_networks[l],to26(lweis[n]),isv2)
changed = True
if not changed: "ERROR: {name}weight is not changed"
for net in nets.loaded_networks:
net.dyn_dim = None
for name,module in tqdm(net.modules.items(), desc=f"{net.name}"):
fullkey = nets.convert_diffusers_name_to_compvis(name,isv2)
msd_key = fullkey.split(".")[0]
if isxl:
if "lora_unet" in msd_key:
msd_key = msd_key.replace("lora_unet", "diffusion_model")
elif "lora_te1_text_model" in msd_key:
msd_key = msd_key.replace("lora_te1_text_model", "0_transformer_text_model")
qvk = ["_q_proj","_k_proj","_v_proj","_out_proj"]
if msd_key in keychanger.keys():
wkey = keychanger[msd_key]
bkey = wkey.replace("weight","bias")
if bkey in theta_0.keys():
theta_0[wkey], theta_0[bkey]= plusweights(theta_0[wkey], module, bias = theta_0[bkey])
else:
theta_0[wkey], _ = plusweights(theta_0[wkey] ,module)
else:
if any(x in name for x in qvk):
for x in qvk:
if x in name:
inkey,outkey = name.replace(x,"") + "_in_proj" ,name.replace(x,"") + "_out_proj"
bkey = keychanger[outkey].replace("weight","bias")
if bkey in theta_0.keys():
theta_0[keychanger[inkey]] ,theta_0[keychanger[outkey]], theta_0[bkey]= plusweightsqvk(theta_0[keychanger[inkey]],theta_0[keychanger[outkey]], name ,module, net, bias = theta_0[bkey])
else:
theta_0[keychanger[inkey]] ,theta_0[keychanger[outkey]], _= plusweightsqvk(theta_0[keychanger[inkey]],theta_0[keychanger[outkey]], name ,module, net)
else:
print(msd_key)
gc.collect()
return theta_0
def plusweights(weight, module, bias = None):
with torch.no_grad():
updown = module.calc_updown(weight.to(dtype=torch.float))
if len(weight.shape) == 4 and weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
if type(updown) == tuple:
updown, ex_bias = updown
if ex_bias is not None and bias is not None:
bias += ex_bias
weight += updown
return weight, bias
def plusweightsqvk(inweight, outweight, network_layer_name, module ,net,bias = None):
with torch.no_grad():
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if module_q and module_k and module_v and module_out:
with torch.no_grad():
updown_q = module_q.calc_updown(inweight)
updown_k = module_k.calc_updown(inweight)
updown_v = module_v.calc_updown(inweight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out = module_out.calc_updown(outweight)
if type(updown_out) is tuple:
updown_out,ex_bias = updown_out
inweight += updown_qkv
outweight += updown_out
if bias is not None and ex_bias is not None:
bias += ex_bias
return inweight,outweight,bias
def lbw(lora,lwei,isv2):
errormodules = []
blocks = LBLCOKS26
if isv2:
blocks[0] = V2ENCODER
for key in lora.modules.keys():
ratio = 1
picked = False
for i,block in enumerate(blocks):
if block in key:
if i == 26: i=0
ratio = lwei[i]
picked = True
if not picked:
errormodules.append(key)
ltype = type(lora.modules[key]).__name__
set = False
if ltype in LORAANDSOON.keys():
setattr(lora.modules[key],LORAANDSOON[ltype],torch.nn.Parameter(getattr(lora.modules[key],LORAANDSOON[ltype]) * ratio))
#print(ltype)
set = True
else:
if hasattr(lora.modules[key],"up_model"):
lora.modules[key].up_model.weight= torch.nn.Parameter(lora.modules[key].up_model.weight *ratio)
#print("LoRA using LoCON")
set = True
else:
lora.modules[key].up.weight= torch.nn.Parameter(lora.modules[key].up.weight *ratio)
#print("LoRA")
set = True
if not set :
print("unkwon LoRA")
if errormodules:
print("unchanged modules:", errormodules)
else:
print(f"{lora.name}: Successfully set the ratio {lwei} ")
return lora
LORAANDSOON = {
"LoraHadaModule" : "w1a",
"LycoHadaModule" : "w1a",
"NetworkModuleHada": "w1a",
"FullModule" : "weight",
"NetworkModuleFull": "weight",
"IA3Module" : "w",
"NetworkModuleIa3" : "w",
"LoraKronModule" : "w1",
"LycoKronModule" : "w1",
"NetworkModuleLokr": "w1",
}
def save_to_file(file_name, model, state_dict, dtype, metadata):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name, metadata=metadata)
else:
torch.save(model, file_name)
CLAMP_QUANTILE = 0.99
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
def get_safetensors_header(filename):
import json
with open(filename, mode="rb") as file:
metadata_len = file.read(8)
metadata_len = int.from_bytes(metadata_len, "little")
json_start = file.read(2)
if metadata_len > 2 and json_start in (b'{"', b"{'"):
json_data = json_start + file.read(metadata_len-2)
return json.loads(json_data)
# invalid safetensors
return {}
def load_state_header(file_name, dtype):
"""load safetensors header if available"""
if os.path.splitext(file_name)[1] == '.safetensors':
sd = get_safetensors_header(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def load_state_dict(file_name, dtype, device = "cpu"):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name,device=device)
metadata = load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location=device)
metadata = {}
isv2 = False
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype = dtype, device = device)
if "resblocks" in key:
isv2 = True
if isv2: print("SD2.X")
return sd, metadata, isv2
def load_metadata_from_safetensors(safetensors_file: str) -> dict:
"""
This method locks the file. see https://github.com/huggingface/safetensors/issues/164
If the file isn't .safetensors or doesn't have metadata, return empty dict.
"""
if os.path.splitext(safetensors_file)[1] != ".safetensors":
return {}
with safetensors.safe_open(safetensors_file, framework="pt", device="cpu") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
return metadata
def dimgetter(filename):
lora_sd = load_state_header(filename, torch.float)
alpha = None
dim = None
ltype = None
if "lora_unet_down_blocks_0_resnets_0_conv1.lora_down.weight" in lora_sd.keys():
ltype = "LoCon"
if type(lora_sd["lora_unet_down_blocks_0_resnets_0_conv1.lora_down.weight"]) is dict:
lora_sd, _, _ = load_state_dict(filename, torch.float)
_, _, dim, _ = dimalpha(lora_sd)
if "lora_unet_input_blocks_4_1_transformer_blocks_1_attn1_to_k.lora_down.weight" in lora_sd.keys():
sdx = "XL"
if type(lora_sd["lora_unet_input_blocks_4_1_transformer_blocks_1_attn1_to_k.lora_down.weight"]) is dict:
lora_sd, _, _ = load_state_dict(filename, torch.float)
_, _, dim, _ = dimalpha(lora_sd)
else:
sdx = ""
for key, value in lora_sd.items():
if alpha is None and 'alpha' in key:
alpha = value
if dim is None and 'lora_down' in key:
if type(value) == torch.Tensor and len(value.size()) == 2:
dim = value.size()[0]
elif type(value) == dict:
dim = value.get("shape",[0,0])[0]
if "hada_" in key:
dim,ltype, sdx = "LyCORIS","LyCORIS", "LyCORIS"
if alpha is not None and dim is not None:
break
if alpha is None:
alpha = dim
if ltype == None:ltype = "LoRA"
if dim :
return dim, ltype, sdx
else:
return "unknown","unknown","unknown"
def blockfromkey(key,keylist,isv2 = False):
try:
import networks as lora
except:
import lora as lora
fullkey = lora.convert_diffusers_name_to_compvis(key,isv2)
if "lora_unet" in fullkey:
fullkey = fullkey.replace("lora_unet", "diffusion_model")
elif "lora_te1_text_model" in fullkey:
fullkey = fullkey.replace("lora_te1_text_model", "0_transformer_text_model")
for i,n in enumerate(keylist):
if n in fullkey: return i
if "1_model_transformer_resblocks_" in fullkey:return 0
print(f"ERROR:Block is not deteced:{fullkey}")
return 0
def dimalpha(lora_sd, base_dims={}, base_alphas={}):
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if 'alpha' in key:
lora_module_name = key[:key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[:key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
return base_dims, base_alphas, dims, alphas
def fullpathfromname(name):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
return checkpoint_info.filename
def makeloraname(model_a,model_b):
model_a=filenamecutter(model_a)
model_b=filenamecutter(model_b)
return "lora_"+model_a+"-"+model_b
V2ENCODER = "resblocks"
LBLCOKS26=["encoder",
"diffusion_model_input_blocks_0_",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_3_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_6_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_input_blocks_9_",
"diffusion_model_input_blocks_10_",
"diffusion_model_input_blocks_11_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_0_",
"diffusion_model_output_blocks_1_",
"diffusion_model_output_blocks_2_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_",
"embedders"]
###########################################################
##### metadata
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
# Because writing user metadata to the file can change the result of
# sd_models.model_hash(), only retain the training metadata for purposes of
# calculating the hash, as they are meant to be immutable
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
def prepare_merge_metadata( ratio, blocks, fromLora ):
"""
メタデータに ratio, blocks などの情報を付加しておく
Parameters
----
ratio : string
name:ratio:blocks の ratio 部分
blocks : string
name:ratio:bloks の blocks 部分(ラベルではなくて実パラメータ)
fromLora : NetworkOnDisk
マージ対象のLoRA
Returns
----
dict[str, str]
メタデータ
"""
meta = fromLora.metadata
meta["sshs_ratio"] = str.strip( ratio )
meta["sshs_blocks"] = str.strip( blocks )
meta["ss_output_name"] = str.strip( fromLora.name )
return meta
BASE_METADATA = [
"sshs_ratio", "sshs_blocks", "ss_output_name",
"sshs_model_hash", "sshs_legacy_hash",
"ss_network_module",
"ss_network_alpha", "ss_network_dim",
"ss_mixed_precision", "ss_v2",
"ss_training_comment",
"ss_sd_model_name", "ss_new_sd_model_hash",
"ss_clip_skip",
"ss_base_model_version"
]
MINIMUM_METADATA = [
"ss_network_module","ss_network_alpha", "ss_network_dim","ss_v2","ss_sd_model_name", "ss_base_model_version"
]
def create_merge_metadata( sd, lmetas, lname, lprecision, metasets ):
"""
LoRAマージ後のメタデータを作成する
Parameters
----
sd : NetworkOnDisk
マージ後のLoRA
lmetas : dict[str, str]
マージされるLoRAのメタデータ
lname : str
マージ後のLoRA名
lprecision : str
save precision の値
mergeAll : bool
メタデータの残し方。ただしタグ情報はディレクトリ名が後勝ちでマージします
True 全メタデータを残す。単マージの場合はTrue固定
False 一部のメタデータのみ残す
Returns
----
dict[str, str]
メタデータ
"""
metadata = {}
networkModule = None
if "first" in metasets:
# 単なるweightマージならそのままコピー
metadata = lmetas[0]
elif "new" in metasets:
for key in MINIMUM_METADATA:
if key in lmetas[0].keys():
metadata[key] = lmetas[0][key]
else:
# 複数マージの場合はマージしたタグと主要メタデータを保存
metadata = lmetas[0]
tags = {}
for i, lmeta in enumerate( lmetas ):
meta = {}
metadata[ f"sshs_cp{i}" ] = json.dumps( lmeta )
# 最初の network_module を保持
if networkModule is None and "ss_network_module" in lmeta:
networkModule = lmeta["ss_network_module"]
# タグをマージ
if "merge" in metasets:
if "ss_tag_frequency" in lmeta:
ldict = lmeta["ss_tag_frequency"]
if "ss_tag_frequency" in metadata:
mdict = metadata["ss_tag_frequency"]
if type(ldict) is dict and type(mdict) is dict:
for key in ldict:
if key not in mdict:
mdict[key] = ldict[key]
# network_moduleからLoRA種別判定する場合が多いため、最初に見つけたものにする
if networkModule is not None:
metadata["ss_network_module"] = networkModule
# output名とprecision、dimは変更された可能性がある
if "without" not in metasets:
metadata["ss_output_name"] = lname
else:
if "ss_output_name" in metadata:
del metadata["ss_output_name"]
metadata["ss_mixed_precision"] = lprecision
# metadataで保存できる形式に変換
for key in metadata:
if type(metadata[key] ) is not str:
metadata[key] = json.dumps( metadata[key] )
# データ変更によりhashが変わるので計算
model_hash, legacy_hash = precalculate_safetensors_hashes( sd, metadata )
metadata[ "sshs_model_hash" ] = model_hash
metadata[ "sshs_legacy_hash" ] = legacy_hash
return metadata
##############################################################
####### Get loranames from prompt
def frompromptf(*args):
outst = []
outss = []
prompt = args[1]
names, multis, lbws = loradealer(prompt, "", "")
for name, multi, lbw in zip(names, multis, lbws):
nml = [name,str(multi),lbw] if lbw is not None else [name,str(multi)]
outst.append(":".join(nml))
if name in selectable:
outss.append(name)
global pchanged
pchanged = True
return outss,",".join(outst), True
def loradealer(prompts,lratios,elementals):
_, extra_network_data = extra_networks.parse_prompts([prompts])
moduletypes = extra_network_data.keys()
outnames = []
outmultis = []
outlbws = []
for ltype in moduletypes:
lorans = []
lorars = []
loraps = []
multipliers = []
elements = []
if not (ltype == "lora" or ltype == "lyco") : continue
for called in extra_network_data[ltype]:
multiple = float(syntaxdealer(called.items,"unet=","te=",1))
multipliers.append(multiple)
lorans.append(called.items[0])
loraps.append(syntaxdealer(called.items,"lbw=",None,2))
if len(lorans) > 0:
outnames.extend(lorans)
outmultis.extend(multipliers)
outlbws.extend(loraps)
return outnames, outmultis, outlbws
def syntaxdealer(items,type1,type2,index): #type "unet=", "x=", "lwbe="
target = [type1,type2] if type2 is not None else [type1]
for t in target:
for item in items:
if t in item:
return item.replace(t,"")
if index > len(items) - 1 :return None
return items[index] if "@" not in items[index] else 1
##############################################################
####### Extract lora from checkpoints args
class Kohya_extract_args:
def __init__(
self,
v2=False,
v_parameterization=None,
sdxl=False,
save_precision=None,
model_org=None,
model_tuned=None,
save_to=None,
dim=4,
conv_dim=None,
device=None,
no_metadata=False,
alpha = 1,
beta = 1
):
self.v2 = v2
self.v_parameterization = v_parameterization
self.sdxl = sdxl
self.save_precision = save_precision
self.model_org = model_org
self.model_tuned = model_tuned
self.save_to = save_to
self.dim = dim
self.conv_dim = conv_dim
self.device = device
self.no_metadata = no_metadata
self.alpha = alpha
self.beta = beta