Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ tags:
|
|
11 |
- transformers
|
12 |
---
|
13 |
|
14 |
-
# sentence-
|
15 |
|
16 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train).
|
17 |
|
@@ -31,7 +31,7 @@ Then you can use the model like this:
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
|
33 |
|
34 |
-
model = SentenceTransformer('efederici/sentence-
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
@@ -57,8 +57,8 @@ def mean_pooling(model_output, attention_mask):
|
|
57 |
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
-
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-
|
61 |
-
model = AutoModel.from_pretrained('efederici/sentence-
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
11 |
- transformers
|
12 |
---
|
13 |
|
14 |
+
# sentence-bert-base
|
15 |
|
16 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train).
|
17 |
|
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
|
33 |
|
34 |
+
model = SentenceTransformer('efederici/sentence-bert-base')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
|
|
57 |
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-bert-base')
|
61 |
+
model = AutoModel.from_pretrained('efederici/sentence-bert-base')
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|