Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1287.58 +/- 135.76
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129246
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89aed71cc72d4e67ef507934cf8aedad03407d63c65e7c9700f95f69479ce532
|
3 |
size 129246
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,7 +37,7 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
@@ -63,7 +63,7 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c3ca3a6fbe0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3ca3a6fc70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3ca3a6fd00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3ca3a6fd90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c3ca3a6fe20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c3ca3a6feb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3ca3a6ff40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3ca3a70040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c3ca3a700d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3ca3a70160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3ca3a701f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3ca3a70280>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c3ca3a67900>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1690867352432006598,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP+OJj/AZVu8JC4FP7te5T/5hd4/p4lIP8qdOj9sccu+kA0Jv5JrlT/bRVS/E27uP5Vhnz9J3E4/xCdOvuJTgD+UP4G/siBhvwK0Wj7wjzpAYvqGP9NvwL+SxW0/qQZlP5hYgL8Trgk/hduEPlCCET/ZkhA/lGlPv0fmGD9nvoo/fELJPaeqk785hj0+Ya67vtJ3LD8ZEUe/rwlDvz8wxD9Wuyg+g9juvi3P0L3SboW/f0YcPk99KD/twvE9rvyivV7VfL/4PuQ+kVp3Pvq0IcCYWIC/E64JP4XbhD5QghE/f7NcPwzU5T22p/I+ucUEQPxdHj/MzOo+eqN0vmtKnL9SMQG+tolAv3pRh78cB5m8NXydPrcUKD/eycI+eU1VP44BvLx1FUk/eja5PrrvhTqICXq/RXemvyA97j8mn7Y9mFiAvxOuCT+F24Q+UIIRP6pMBz92nFU/5B2bvDS7kj+gVwA/Vdusvo1web9/YQS/lB+uvwVnEb6GeXG/JFJFP5/oaTyC9Ey99TMOPwv4qj6xGwe/RYwwP7kyxb5YfSPANNe5v8Uy+L0HF5w//nSDvphYgL8Trgk/hduEPlCCET+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOm481AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjLDmPQAAAABmCtm/AAAAAHy9gjwAAAAA38f/PwAAAAAJiMc9AAAAAKWE6j8AAAAA4rIqvQAAAABQ6+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdrXutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMg1CD4AAAAAnSvrvwAAAABVFP89AAAAAMsv5T8AAAAAtsUAvgAAAADlBec/AAAAAJKmWr0AAAAA6w/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq7ojUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMeFU9AAAAACff+b8AAAAAtC26PQAAAADRfvI/AAAAAG6XjLsAAAAAfejoPwAAAAATMXK8AAAAAHAJAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7vX42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGJ2/vQAAAADvz+e/AAAAAA4SAz4AAAAAEDrgPwAAAABTI0q9AAAAAAe8+j8AAAAAV4l5PAAAAAB55tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIU1RiqhlDqMAWyUTegDjAF0lEdAqTkz8zhxYXV9lChoBkdAiNR4LkS26WgHTegDaAhHQKk6xATqSox1fZQoaAZHQIjVQ2wV0tBoB03oA2gIR0CpQPYaYNRWdX2UKGgGR0CEcR0KZ2IPaAdN6ANoCEdAqUSTollbvHV9lChoBkdAhbzppnHvMWgHTegDaAhHQKlHiaw2VFB1fZQoaAZHQH646BNEgGNoB03oA2gIR0CpSKOwosqbdX2UKGgGR0CAzWjesPrfaAdN6ANoCEdAqU3HGMn7YXV9lChoBkdAiXf+eOGTLWgHTegDaAhHQKlRZtQbdad1fZQoaAZHQIQZM3IdU85oB03oA2gIR0CpVUEW69TQdX2UKGgGR0CIybNr0rbyaAdN6ANoCEdAqVbQu/UONHV9lChoBkdAfZWA57w8XGgHTegDaAhHQKlctWFvhqF1fZQoaAZHQJBPjKPn0TVoB03oA2gIR0CpYDylnAZbdX2UKGgGR0B/scTAWSEEaAdN6ANoCEdAqWMh57gKnnV9lChoBkdAjCTf/NqxkmgHTegDaAhHQKlkPwJgLJF1fZQoaAZHQIq4Ys/Y8MdoB03oA2gIR0CpaVCIcinpdX2UKGgGR0CG2SNRWLgoaAdN6ANoCEdAqWzYkVvddnV9lChoBkdAiD2yXUpd8mgHTegDaAhHQKlwwE5hjON1fZQoaAZHQIKL9wYLsrxoB03oA2gIR0CpcnnVG0/odX2UKGgGR0CQcFc9W6siaAdN6ANoCEdAqXgH4mCyyHV9lChoBkdAiiNSiVSn+GgHTegDaAhHQKl7eglF+d91fZQoaAZHQJDR2UzKs+5oB03oA2gIR0CpfllEiMYNdX2UKGgGR0BwpXCtRvWIaAdN6ANoCEdAqX9wDq4YrXV9lChoBkdAkfTy2DxsmGgHTegDaAhHQKmEYDU3GXJ1fZQoaAZHQI26cmhM8HRoB03oA2gIR0Cph8smfGuLdX2UKGgGR0CQ2KRekYXPaAdN6ANoCEdAqYu3Yao/A3V9lChoBkdAkV94LsrupmgHTegDaAhHQKmNShwEQoV1fZQoaAZHQI/OdtwaR6poB03oA2gIR0CpksNp22XtdX2UKGgGR0CS/3lE7W/baAdN6ANoCEdAqZY9a8pTdnV9lChoBkdAkRxZiAlOXWgHTegDaAhHQKmZHLGJemh1fZQoaAZHQJNrmrWAf+1oB03oA2gIR0Cpmil3yI56dX2UKGgGR0CS9qqFRHf/aAdN6ANoCEdAqZ8ckQf6oHV9lChoBkdAkwwRpYcNpmgHTegDaAhHQKmifuw5eZ51fZQoaAZHQJJ4xOJtSAJoB03oA2gIR0CppnQV0tAcdX2UKGgGR0CREZrvsqrjaAdN6ANoCEdAqaf+2uxKQXV9lChoBkdAkw+SoGY8dWgHTegDaAhHQKmtj3evZAZ1fZQoaAZHQJJmWMCLdepoB03oA2gIR0CpsSXhGYrsdX2UKGgGR0CTVE8kD6nBaAdN6ANoCEdAqbQAEfT1CnV9lChoBkdAkuCnAIppe2gHTegDaAhHQKm1DNHpbEB1fZQoaAZHQJI1U6DGtIVoB03oA2gIR0CpueRg7YChdX2UKGgGR0CUKhvwmVqvaAdN6ANoCEdAqb1TkXDWLHV9lChoBkdAkw8twR5C4WgHTegDaAhHQKnBF7Lt/nZ1fZQoaAZHQJIjocp9ZzRoB03oA2gIR0CpwqKPfbbldX2UKGgGR0CSjqrcCYCyaAdN6ANoCEdAqcgneaa1C3V9lChoBkdAk9Fv642CNGgHTegDaAhHQKnLky8BdUt1fZQoaAZHQIwswQtjCpFoB03oA2gIR0CpznwemvW6dX2UKGgGR0CQtZjKgZjyaAdN6ANoCEdAqc+WEAYHgXV9lChoBkdAks/RE8aGYmgHTegDaAhHQKnUlKraM751fZQoaAZHQJJ604jrzGxoB03oA2gIR0Cp2AnlXA/LdX2UKGgGR0CQlM6YE4ecaAdN6ANoCEdAqdvXX2/SIHV9lChoBkdAkntITbnHN2gHTegDaAhHQKndZ9x6v7p1fZQoaAZHQJRYCZa3ZwpoB03oA2gIR0Cp4vMQmNR4dX2UKGgGR0CSsbNYr8R+aAdN6ANoCEdAqeZh4QjD9HV9lChoBkdAlG95cTrVv2gHTegDaAhHQKnpRJLdvbZ1fZQoaAZHQJNGwQBgeBBoB03oA2gIR0Cp6lN0NjLCdX2UKGgGR0CTNA/6fra/aAdN6ANoCEdAqe9nbmEGq3V9lChoBkdAkD61JQLuyGgHTegDaAhHQKny6XJHRTl1fZQoaAZHQI2GmnbZezFoB03oA2gIR0Cp9smj9GZvdX2UKGgGR0CS09+t8uzyaAdN6ANoCEdAqfhU0BOpKnV9lChoBkdAkui/7el9B2gHTegDaAhHQKn9094/u9h1fZQoaAZHQJCyMDzRQadoB03oA2gIR0CqAU8e8wpOdX2UKGgGR0CVzls54nndaAdN6ANoCEdAqgQlolD4QHV9lChoBkdAlNNHlbNbDGgHTegDaAhHQKoFKrsjVx11fZQoaAZHQJWbc2n889xoB03oA2gIR0CqCf4/NZ/1dX2UKGgGR0COhYytV7x/aAdN6ANoCEdAqg1vYUWVNnV9lChoBkdAlhFtE1EVnGgHTegDaAhHQKoRJWdVea91fZQoaAZHQJQlZT6zmfZoB03oA2gIR0CqEqz850bMdX2UKGgGR0CUZ6dZ7ojfaAdN6ANoCEdAqhhLQAuIynV9lChoBkdAk8/FcMVk+WgHTegDaAhHQKobr2Cdz4l1fZQoaAZHQJRcZHEuQIVoB03oA2gIR0CqHosU7CBPdX2UKGgGR0CT+3BSUC7saAdN6ANoCEdAqh+bfWMCLnV9lChoBkdAkGtHFDOTq2gHTegDaAhHQKokf/wRXfZ1fZQoaAZHQJKOrxlQMx5oB03oA2gIR0CqJ+rwWnCPdX2UKGgGR0CRyUNEgGKRaAdN6ANoCEdAqiunWH1vl3V9lChoBkdAjVNdJ8OTaGgHTegDaAhHQKotNxZuAI91fZQoaAZHQJPlat7rs0JoB03oA2gIR0CqMuKHwgDBdX2UKGgGR0CUOlkxREWqaAdN6ANoCEdAqjZPlbNbDHV9lChoBkdAlCl0adc0L2gHTegDaAhHQKo5JQemvW91fZQoaAZHQJYjC4LCvX9oB03oA2gIR0CqOjbjkuHvdX2UKGgGR0CTuog0j1PFaAdN6ANoCEdAqj8WgvlEJHV9lChoBkdAkHcm2sq8UWgHTegDaAhHQKpCnK2a2F51fZQoaAZHQI51+3+dbxFoB03oA2gIR0CqRkRQ79ycdX2UKGgGR0CQaj3s5XEJaAdN6ANoCEdAqkfMstkFwHV9lChoBkdAkekTMRpUP2gHTegDaAhHQKpNdcNYr8R1fZQoaAZHQJAGEfZElVtoB03oA2gIR0CqUO2Hk92YdX2UKGgGR0CJmC2OyVv/aAdN6ANoCEdAqlPUcABDHHV9lChoBkdAk8OdOVPepGgHTegDaAhHQKpU8o/A0sR1fZQoaAZHQJHU8xIre69oB03oA2gIR0CqWdcd5prUdX2UKGgGR0CHFf7TDwYtaAdN6ANoCEdAql1XO+qR2nV9lChoBkdAjiKCVKPGQ2gHTegDaAhHQKpg9D5TIeZ1fZQoaAZHQJMnOFSKm9BoB03oA2gIR0CqYnZxaPjodX2UKGgGR0CSfalv60pmaAdN6ANoCEdAqmhZ1LamGnV9lChoBkdAkeTK15Sm7GgHTegDaAhHQKpr0qoZQ551fZQoaAZHQJC+KNJe3QVoB03oA2gIR0CqbrRQaaTfdX2UKGgGR0CMqsCK77KraAdN6ANoCEdAqm/A7Rv3rXV9lChoBkdAkc6Pnr6ciGgHTegDaAhHQKp0m40dilV1fZQoaAZHQJS/RPCVKPJoB03oA2gIR0CqeAaEi+tbdX2UKGgGR0CUWjfSx7iRaAdN6ANoCEdAqnualBQem3V9lChoBkdAk7DcQmNR32gHTegDaAhHQKp9GTzND+l1fZQoaAZHQJKybVLBbfRoB03oA2gIR0CqguSDIzWPdX2UKGgGR0CTHzCI1tO3aAdN6ANoCEdAqoZOq94/vHVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:138031a72352fa9985d2a00c927a2bc28ab1401d185eba7b41dc35380fc57333
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2784510772555eef1c34dbc423e64fd6d6fce8ff53de9341932f2d29c81d708
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a094040a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a094040a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a094040a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a094040aa70>", "_build": "<function ActorCriticPolicy._build at 0x7a094040ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7a094040ab90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a094040ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a094040acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a094040ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a094040add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a094040ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a094040aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0940414f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690547019520459345, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADdGyz4q/y2/mVmMPvnjP71I+TDA+jAoQDbW2b9hOLe94reUv6jssD5ry52+mvWdvkfJuD2Hvae/oypdP+mINj1CIe097zbZv7dBzL9lmlG/4IOiPhV/PkARnD6/vamOProqBj/L9KQ+2z8GP683rr+Udqy9vJQWQNAq+r8u50+/n8jCPkVhvD1ewzLASTTTPgSX87+mgva7JqpHv9THGrybwc4/cA0WvOFiaD6nxSk9f+OxP+xWbL2GuTzAn4wDPSyUar8eMg89EZ47QFekRjq6KgY/y/SkPj0V9L8yFjw/xY8HP1ZBhD1k8Bo/139Av1GED8AmIAFA97EMwF/WQL5eKb+/C3JavS7n5L3OLuy+hoorPzLn0b/3JFw/7NLVPApYFL/ApEzAc1ervze8kT1lCCo/Bb5mQJaoNb+3l4m8uioGP8v0pD49FfS/rzeuv2Mzgr9PZWs/XTAIP1MW1z4RpG+/ZN05vbjh+r3/RK69Kw2bv73P+D6mjOC+qkkCP2MFW764qfQ/U4I/P0CijbjeowXA8zcTu5s0FT8ShEA/6xTsP8/bC8DjXCS/IVdHP7oqBj/L9KQ+2z8GP683rr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADspJW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb4rqPAAAAACqhvq/AAAAAMYN/zwAAAAANv/kPwAAAABO4YK9AAAAAF8D7z8AAAAAG4b/PQAAAACW//i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyinNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIbAzbwAAAAAv+79vwAAAABO0r29AAAAAJrP/z8AAAAAcesqvAAAAACmB/Q/AAAAABG4B74AAAAAs/rivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxsCTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5ed09AAAAAA52578AAAAAMNkBPgAAAACfm/M/AAAAAJkD8bwAAAAACaXoPwAAAACpesG9AAAAACcy2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsNK02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAezCovQAAAACOl+6/AAAAAJ9y4z0AAAAAAlLzPwAAAADWFAO9AAAAAFrq7j8AAAAAaCZjvQAAAABH5+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIeRnSncclyMAWyUTegDjAF0lEdAscrxXA/LT3V9lChoBkdAhjQAFgUlA2gHTegDaAhHQLHLQnvUjLV1fZQoaAZHQIHqKHoHLRtoB03oA2gIR0Cxy323fAKwdX2UKGgGR0B/VoleF+NMaAdN6ANoCEdAsc0XjCHh0nV9lChoBkdAdQovc8DB/WgHTegDaAhHQLHRgnJkoWp1fZQoaAZHQHMEgUQCjlBoB03oA2gIR0Cx0dVvES/TdX2UKGgGR0B8icPnSv1UaAdN6ANoCEdAsdIN72L5ynV9lChoBkdAcEbI55qubWgHTegDaAhHQLHTmqY7aIx1fZQoaAZHQIwb9TDO1OVoB03oA2gIR0Cx2S3Sa3I/dX2UKGgGR0B1pbkXDWK/aAdN6ANoCEdAsdl/lFMIvHV9lChoBkdAi9c1X/5tWWgHTegDaAhHQLHZtsAvL5h1fZQoaAZHQIsj6f6GgzxoB03oA2gIR0Cx20PHggoxdX2UKGgGR0CK/0BjFyaNaAdN6ANoCEdAsd+EuzyBkXV9lChoBkdAiqVh91EE1WgHTegDaAhHQLHf2wYcebN1fZQoaAZHQI0BNp48loloB03oA2gIR0Cx4BKdhAnldX2UKGgGR0CMaHdO6/ZeaAdN6ANoCEdAseGan752yXV9lChoBkdAd2iVlPJq7GgHTegDaAhHQLHnH6yB06p1fZQoaAZHQH34lr2xptdoB03oA2gIR0Cx529l2/zrdX2UKGgGR0B/3CFajesQaAdN6ANoCEdAseemWrwOOXV9lChoBkdAf8YvL5h0AGgHTegDaAhHQLHpNms/6ft1fZQoaAZHQIisBCdBjWloB03oA2gIR0Cx7YQBtDUmdX2UKGgGR0CK5CxW1c+raAdN6ANoCEdAse3VyS3b23V9lChoBkdAfGuA2Q4jr2gHTegDaAhHQLHuEpPAO8V1fZQoaAZHQHrbyX6ZYxNoB03EA2gIR0Cx72HNke6qdX2UKGgGR0B5+6FrVOKwaAdNfANoCEdAsfTUOd5IH3V9lChoBkdAelOxrzoUz2gHTegDaAhHQLH1OJul41R1fZQoaAZHQHXciiItUXJoB03oA2gIR0Cx9cF8ohIOdX2UKGgGR0B7ZoaaTfSAaAdN6ANoCEdAsfcZDkU9IXV9lChoBkdAhkTH8jzI3mgHTegDaAhHQLH7NXrdFfB1fZQoaAZHQIgWd56dDploB03oA2gIR0Cx+5Mf7rLRdX2UKGgGR0CBftTJhfBvaAdN6ANoCEdAsfwc2gnMMnV9lChoBkdAgab7XYlIE2gHTegDaAhHQLH9kiyIHkd1fZQoaAZHQFxwFqBVdX1oB02FAWgIR0CyAR7K3d9EdX2UKGgGR0B6vrC66J66aAdN6ANoCEdAsgLNZeRgZ3V9lChoBkdAfqJGLDQ7cWgHTegDaAhHQLIDLMW43FV1fZQoaAZHQHRBmJBPbfxoB03oA2gIR0CyA7epsGgSdX2UKGgGR0CALgBmwqy4aAdN6ANoCEdAsgeC3fAKv3V9lChoBkdAeoD1bJOnEWgHTegDaAhHQLIJKuoP07N1fZQoaAZHQH3dTKT0QK9oB03oA2gIR0CyCY4TsY2sdX2UKGgGR0CANDYq5LAYaAdN6ANoCEdAsgoYlByCF3V9lChoBkdAgmWxIz3yqmgHTegDaAhHQLIPF4XXRPZ1fZQoaAZHQH1b2RRuTA5oB03oA2gIR0CyENLOqvNedX2UKGgGR0B/OSKsMiKSaAdN6ANoCEdAshEzV+Zw43V9lChoBkdAgsm5pSJj2GgHTegDaAhHQLIRuybQTmJ1fZQoaAZHQJBQx0fYBeZoB03oA2gIR0CyFZVme18cdX2UKGgGR0CB9lo8p1A8aAdN6ANoCEdAshc8oTfzjHV9lChoBkdAj80zsyBTXWgHTegDaAhHQLIXnC4SYgJ1fZQoaAZHQIJIVRekYXRoB03oA2gIR0CyGCRHPNVzdX2UKGgGR0B8SipxWDHwaAdN6ANoCEdAshzy69TP0XV9lChoBkdAilczfBN21WgHTegDaAhHQLIekO2RaHN1fZQoaAZHQI96ULH+6y1oB03oA2gIR0CyHu+cpb2UdX2UKGgGR0CSBivHtF8YaAdN6ANoCEdAsh99d7fHgnV9lChoBkdAkDYbdN34bmgHTegDaAhHQLIjNzsQd0d1fZQoaAZHQJCUO+g13t9oB03oA2gIR0CyJNdbHIZJdX2UKGgGR0CEtrORkmQbaAdN6ANoCEdAsiU3xgAp8XV9lChoBkdAjziZTho/RmgHTegDaAhHQLIl6eOGTLZ1fZQoaAZHQH0DHA6+36RoB03oA2gIR0CyKrIV/MGHdX2UKGgGR0Bw1GFj/dZaaAdN6ANoCEdAsixWERJ2+3V9lChoBkdAdSPmCROk+GgHTegDaAhHQLIsvp7kXDZ1fZQoaAZHQImYYe5nUUhoB03oA2gIR0CyLUcibDuSdX2UKGgGR0CIQSAvL5h0aAdN6ANoCEdAsjEUEJSiunV9lChoBkdAgqUqKpDNQmgHTegDaAhHQLIyx0Sh8IB1fZQoaAZHQIcxNhVlwtJoB03oA2gIR0CyM0St3fQ8dX2UKGgGR0CC1EMOPNmlaAdN6ANoCEdAsjQajCYTkHV9lChoBkdAfsAFirksBmgHTegDaAhHQLI4k48lolF1fZQoaAZHQIY1FzhgmZ5oB03oA2gIR0CyOi4zJp35dX2UKGgGR0CGOOhzvJA/aAdN6ANoCEdAsjqTTWoWHnV9lChoBkdAgAaNBfKISGgHTegDaAhHQLI7Ivysjml1fZQoaAZHQIasFe4TbnJoB03oA2gIR0CyPsp7w8W9dX2UKGgGR0B+wXFsHjZMaAdN6ANoCEdAskBv1VYISnV9lChoBkdAezHuqFRHgGgHTegDaAhHQLJA/4fOlft1fZQoaAZHQH/nrLEDQqtoB03oA2gIR0CyQcLfgrH3dX2UKGgGR0B1BxVvMr3CaAdN6ANoCEdAskYms2eg+XV9lChoBkdAe2vy5qdpZmgHTegDaAhHQLJHx+F10T11fZQoaAZHQIArw1DSgGtoB03oA2gIR0CySCj4+KTCdX2UKGgGR0B1VjVoYekpaAdN6ANoCEdAskiuXPZ7HHV9lChoBkdAf0OgyM1jzGgHTegDaAhHQLJMfon8baR1fZQoaAZHQH/C8+aBqbloB03oA2gIR0CyTk+4Cp3pdX2UKGgGR0CADZaRp1zRaAdN6ANoCEdAsk7bLns9jnV9lChoBkdAc4U91U2kz2gHTegDaAhHQLJPmr7fpEB1fZQoaAZHQIR02yRjjJdoB03oA2gIR0CyU8kq6OHWdX2UKGgGR0B+f+Jiy6czaAdN6ANoCEdAslVz5j6N2nV9lChoBkdAelBB68g6l2gHTegDaAhHQLJV0yZa3Zx1fZQoaAZHQH/ek8V58jRoB03oA2gIR0CyVlUALiMpdX2UKGgGR0B8Y+2x6fJ4aAdN6ANoCEdAsloLNA1NxnV9lChoBkdAe8l2fTTfBWgHTegDaAhHQLJb6ANXo1V1fZQoaAZHQG3bvitJWeZoB03oA2gIR0CyXG0f5k9VdX2UKGgGR0CEKY1iONo8aAdN6ANoCEdAsl0rhWHUMHV9lChoBkdAhBV0DuBtlGgHTegDaAhHQLJhRJJ5E+h1fZQoaAZHQIv1HfuTibVoB03oA2gIR0CyYuadMCcPdX2UKGgGR0CJmgAjIJZ4aAdN6ANoCEdAsmNFpaiblXV9lChoBkdAhyuxJmNBGGgHTegDaAhHQLJjyl6JIlN1fZQoaAZHQIzOnR3NcGFoB03oA2gIR0CyZ4BjOLR8dX2UKGgGR0CDTle7cwg1aAdN6ANoCEdAsmlsTh5xBHV9lChoBkdAiZHBDw6QvGgHTegDaAhHQLJp+dTHbRF1fZQoaAZHQIKVbGFSKm9oB03oA2gIR0CyarzV6NVBdX2UKGgGR0CIBZcRDkU9aAdN6ANoCEdAsm6/RE4NqnV9lChoBkdAgOktwiqyW2gHTegDaAhHQLJwXornTy91fZQoaAZHQIMbuvOhTOxoB03oA2gIR0CycLnkYGdJdX2UKGgGR0CDS+RgZ0jkaAdN6ANoCEdAsnE5vaURnXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c3ca3a6fbe0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3ca3a6fc70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3ca3a6fd00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3ca3a6fd90>", "_build": "<function ActorCriticPolicy._build at 0x7c3ca3a6fe20>", "forward": "<function ActorCriticPolicy.forward at 0x7c3ca3a6feb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3ca3a6ff40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3ca3a70040>", "_predict": "<function ActorCriticPolicy._predict at 0x7c3ca3a700d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3ca3a70160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3ca3a701f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3ca3a70280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3ca3a67900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690867352432006598, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP+OJj/AZVu8JC4FP7te5T/5hd4/p4lIP8qdOj9sccu+kA0Jv5JrlT/bRVS/E27uP5Vhnz9J3E4/xCdOvuJTgD+UP4G/siBhvwK0Wj7wjzpAYvqGP9NvwL+SxW0/qQZlP5hYgL8Trgk/hduEPlCCET/ZkhA/lGlPv0fmGD9nvoo/fELJPaeqk785hj0+Ya67vtJ3LD8ZEUe/rwlDvz8wxD9Wuyg+g9juvi3P0L3SboW/f0YcPk99KD/twvE9rvyivV7VfL/4PuQ+kVp3Pvq0IcCYWIC/E64JP4XbhD5QghE/f7NcPwzU5T22p/I+ucUEQPxdHj/MzOo+eqN0vmtKnL9SMQG+tolAv3pRh78cB5m8NXydPrcUKD/eycI+eU1VP44BvLx1FUk/eja5PrrvhTqICXq/RXemvyA97j8mn7Y9mFiAvxOuCT+F24Q+UIIRP6pMBz92nFU/5B2bvDS7kj+gVwA/Vdusvo1web9/YQS/lB+uvwVnEb6GeXG/JFJFP5/oaTyC9Ey99TMOPwv4qj6xGwe/RYwwP7kyxb5YfSPANNe5v8Uy+L0HF5w//nSDvphYgL8Trgk/hduEPlCCET+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOm481AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjLDmPQAAAABmCtm/AAAAAHy9gjwAAAAA38f/PwAAAAAJiMc9AAAAAKWE6j8AAAAA4rIqvQAAAABQ6+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdrXutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMg1CD4AAAAAnSvrvwAAAABVFP89AAAAAMsv5T8AAAAAtsUAvgAAAADlBec/AAAAAJKmWr0AAAAA6w/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq7ojUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMeFU9AAAAACff+b8AAAAAtC26PQAAAADRfvI/AAAAAG6XjLsAAAAAfejoPwAAAAATMXK8AAAAAHAJAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7vX42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGJ2/vQAAAADvz+e/AAAAAA4SAz4AAAAAEDrgPwAAAABTI0q9AAAAAAe8+j8AAAAAV4l5PAAAAAB55tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIU1RiqhlDqMAWyUTegDjAF0lEdAqTkz8zhxYXV9lChoBkdAiNR4LkS26WgHTegDaAhHQKk6xATqSox1fZQoaAZHQIjVQ2wV0tBoB03oA2gIR0CpQPYaYNRWdX2UKGgGR0CEcR0KZ2IPaAdN6ANoCEdAqUSTollbvHV9lChoBkdAhbzppnHvMWgHTegDaAhHQKlHiaw2VFB1fZQoaAZHQH646BNEgGNoB03oA2gIR0CpSKOwosqbdX2UKGgGR0CAzWjesPrfaAdN6ANoCEdAqU3HGMn7YXV9lChoBkdAiXf+eOGTLWgHTegDaAhHQKlRZtQbdad1fZQoaAZHQIQZM3IdU85oB03oA2gIR0CpVUEW69TQdX2UKGgGR0CIybNr0rbyaAdN6ANoCEdAqVbQu/UONHV9lChoBkdAfZWA57w8XGgHTegDaAhHQKlctWFvhqF1fZQoaAZHQJBPjKPn0TVoB03oA2gIR0CpYDylnAZbdX2UKGgGR0B/scTAWSEEaAdN6ANoCEdAqWMh57gKnnV9lChoBkdAjCTf/NqxkmgHTegDaAhHQKlkPwJgLJF1fZQoaAZHQIq4Ys/Y8MdoB03oA2gIR0CpaVCIcinpdX2UKGgGR0CG2SNRWLgoaAdN6ANoCEdAqWzYkVvddnV9lChoBkdAiD2yXUpd8mgHTegDaAhHQKlwwE5hjON1fZQoaAZHQIKL9wYLsrxoB03oA2gIR0CpcnnVG0/odX2UKGgGR0CQcFc9W6siaAdN6ANoCEdAqXgH4mCyyHV9lChoBkdAiiNSiVSn+GgHTegDaAhHQKl7eglF+d91fZQoaAZHQJDR2UzKs+5oB03oA2gIR0CpfllEiMYNdX2UKGgGR0BwpXCtRvWIaAdN6ANoCEdAqX9wDq4YrXV9lChoBkdAkfTy2DxsmGgHTegDaAhHQKmEYDU3GXJ1fZQoaAZHQI26cmhM8HRoB03oA2gIR0Cph8smfGuLdX2UKGgGR0CQ2KRekYXPaAdN6ANoCEdAqYu3Yao/A3V9lChoBkdAkV94LsrupmgHTegDaAhHQKmNShwEQoV1fZQoaAZHQI/OdtwaR6poB03oA2gIR0CpksNp22XtdX2UKGgGR0CS/3lE7W/baAdN6ANoCEdAqZY9a8pTdnV9lChoBkdAkRxZiAlOXWgHTegDaAhHQKmZHLGJemh1fZQoaAZHQJNrmrWAf+1oB03oA2gIR0Cpmil3yI56dX2UKGgGR0CS9qqFRHf/aAdN6ANoCEdAqZ8ckQf6oHV9lChoBkdAkwwRpYcNpmgHTegDaAhHQKmifuw5eZ51fZQoaAZHQJJ4xOJtSAJoB03oA2gIR0CppnQV0tAcdX2UKGgGR0CREZrvsqrjaAdN6ANoCEdAqaf+2uxKQXV9lChoBkdAkw+SoGY8dWgHTegDaAhHQKmtj3evZAZ1fZQoaAZHQJJmWMCLdepoB03oA2gIR0CpsSXhGYrsdX2UKGgGR0CTVE8kD6nBaAdN6ANoCEdAqbQAEfT1CnV9lChoBkdAkuCnAIppe2gHTegDaAhHQKm1DNHpbEB1fZQoaAZHQJI1U6DGtIVoB03oA2gIR0CpueRg7YChdX2UKGgGR0CUKhvwmVqvaAdN6ANoCEdAqb1TkXDWLHV9lChoBkdAkw8twR5C4WgHTegDaAhHQKnBF7Lt/nZ1fZQoaAZHQJIjocp9ZzRoB03oA2gIR0CpwqKPfbbldX2UKGgGR0CSjqrcCYCyaAdN6ANoCEdAqcgneaa1C3V9lChoBkdAk9Fv642CNGgHTegDaAhHQKnLky8BdUt1fZQoaAZHQIwswQtjCpFoB03oA2gIR0CpznwemvW6dX2UKGgGR0CQtZjKgZjyaAdN6ANoCEdAqc+WEAYHgXV9lChoBkdAks/RE8aGYmgHTegDaAhHQKnUlKraM751fZQoaAZHQJJ604jrzGxoB03oA2gIR0Cp2AnlXA/LdX2UKGgGR0CQlM6YE4ecaAdN6ANoCEdAqdvXX2/SIHV9lChoBkdAkntITbnHN2gHTegDaAhHQKndZ9x6v7p1fZQoaAZHQJRYCZa3ZwpoB03oA2gIR0Cp4vMQmNR4dX2UKGgGR0CSsbNYr8R+aAdN6ANoCEdAqeZh4QjD9HV9lChoBkdAlG95cTrVv2gHTegDaAhHQKnpRJLdvbZ1fZQoaAZHQJNGwQBgeBBoB03oA2gIR0Cp6lN0NjLCdX2UKGgGR0CTNA/6fra/aAdN6ANoCEdAqe9nbmEGq3V9lChoBkdAkD61JQLuyGgHTegDaAhHQKny6XJHRTl1fZQoaAZHQI2GmnbZezFoB03oA2gIR0Cp9smj9GZvdX2UKGgGR0CS09+t8uzyaAdN6ANoCEdAqfhU0BOpKnV9lChoBkdAkui/7el9B2gHTegDaAhHQKn9094/u9h1fZQoaAZHQJCyMDzRQadoB03oA2gIR0CqAU8e8wpOdX2UKGgGR0CVzls54nndaAdN6ANoCEdAqgQlolD4QHV9lChoBkdAlNNHlbNbDGgHTegDaAhHQKoFKrsjVx11fZQoaAZHQJWbc2n889xoB03oA2gIR0CqCf4/NZ/1dX2UKGgGR0COhYytV7x/aAdN6ANoCEdAqg1vYUWVNnV9lChoBkdAlhFtE1EVnGgHTegDaAhHQKoRJWdVea91fZQoaAZHQJQlZT6zmfZoB03oA2gIR0CqEqz850bMdX2UKGgGR0CUZ6dZ7ojfaAdN6ANoCEdAqhhLQAuIynV9lChoBkdAk8/FcMVk+WgHTegDaAhHQKobr2Cdz4l1fZQoaAZHQJRcZHEuQIVoB03oA2gIR0CqHosU7CBPdX2UKGgGR0CT+3BSUC7saAdN6ANoCEdAqh+bfWMCLnV9lChoBkdAkGtHFDOTq2gHTegDaAhHQKokf/wRXfZ1fZQoaAZHQJKOrxlQMx5oB03oA2gIR0CqJ+rwWnCPdX2UKGgGR0CRyUNEgGKRaAdN6ANoCEdAqiunWH1vl3V9lChoBkdAjVNdJ8OTaGgHTegDaAhHQKotNxZuAI91fZQoaAZHQJPlat7rs0JoB03oA2gIR0CqMuKHwgDBdX2UKGgGR0CUOlkxREWqaAdN6ANoCEdAqjZPlbNbDHV9lChoBkdAlCl0adc0L2gHTegDaAhHQKo5JQemvW91fZQoaAZHQJYjC4LCvX9oB03oA2gIR0CqOjbjkuHvdX2UKGgGR0CTuog0j1PFaAdN6ANoCEdAqj8WgvlEJHV9lChoBkdAkHcm2sq8UWgHTegDaAhHQKpCnK2a2F51fZQoaAZHQI51+3+dbxFoB03oA2gIR0CqRkRQ79ycdX2UKGgGR0CQaj3s5XEJaAdN6ANoCEdAqkfMstkFwHV9lChoBkdAkekTMRpUP2gHTegDaAhHQKpNdcNYr8R1fZQoaAZHQJAGEfZElVtoB03oA2gIR0CqUO2Hk92YdX2UKGgGR0CJmC2OyVv/aAdN6ANoCEdAqlPUcABDHHV9lChoBkdAk8OdOVPepGgHTegDaAhHQKpU8o/A0sR1fZQoaAZHQJHU8xIre69oB03oA2gIR0CqWdcd5prUdX2UKGgGR0CHFf7TDwYtaAdN6ANoCEdAql1XO+qR2nV9lChoBkdAjiKCVKPGQ2gHTegDaAhHQKpg9D5TIeZ1fZQoaAZHQJMnOFSKm9BoB03oA2gIR0CqYnZxaPjodX2UKGgGR0CSfalv60pmaAdN6ANoCEdAqmhZ1LamGnV9lChoBkdAkeTK15Sm7GgHTegDaAhHQKpr0qoZQ551fZQoaAZHQJC+KNJe3QVoB03oA2gIR0CqbrRQaaTfdX2UKGgGR0CMqsCK77KraAdN6ANoCEdAqm/A7Rv3rXV9lChoBkdAkc6Pnr6ciGgHTegDaAhHQKp0m40dilV1fZQoaAZHQJS/RPCVKPJoB03oA2gIR0CqeAaEi+tbdX2UKGgGR0CUWjfSx7iRaAdN6ANoCEdAqnualBQem3V9lChoBkdAk7DcQmNR32gHTegDaAhHQKp9GTzND+l1fZQoaAZHQJKybVLBbfRoB03oA2gIR0CqguSDIzWPdX2UKGgGR0CTHzCI1tO3aAdN6ANoCEdAqoZOq94/vHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1287.584815071302, "std_reward": 135.76435786600885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-01T06:44:02.222833"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d91290e9f6da22b6685f96e80c9920baf0f444fad907372dec75789d6e891e3c
|
3 |
size 2176
|