sample_rate: 44_000 audio_backend: "dac" models: - name: "nar-len" size: audio_tokens: 1024 text_tokens: 256 dim: 1024 heads: 16 layers: 16 resp_levels: 9 prom_levels: 9 tasks: 8 langs: 2 tones: 1 arch_type: llama training: True version: 5 attention: flash_attention_2 dropout: 0.1 #loss_factors: # text: 0.01 # prom: 0.5 # resp: 1.0 # len: 1.0 capabilities: ["nar", "len"] experimental: audio_embedding_sums: False interleave: False unified_position_ids: True rvq_level_range: [] split_classifiers: True tie_classifier_to_embedding: False #loras: #- name : "lora-test" # rank: 128 # alpha: 128 # training: True # rvq_levels: [] hyperparameters: batch_size: 16 gradient_accumulation_steps: 4 gradient_clipping: 1.0 warmup_steps: 10 optimizer: Prodigy learning_rate: 1.0 torch_optimizer: True scheduler: "" # ScheduleFree torch_scheduler: True evaluation: batch_size: 4 frequency: 250 size: 4 steps: 500 ar_temperature: 1.0 nar_temperature: 0.0 trainer: iterations: 1_000_000 save_frequency: 250 keep_last_checkpoints: 4 check_for_oom: False gradient_checkpointing: False weight_dtype: bfloat16 amp: False backend: deepspeed deepspeed: inferencing: False amp: False load_webui: False inference: backend: local normalize: False weight_dtype: bfloat16 amp: False optimizations: injects: False replace: True linear: False embedding: False optimizers: True bitsandbytes: False dadaptation: False bitnet: False fp8: False dataset: speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" speaker_group_getter: "lambda p: f'{p.parts[-3]}'" use_hdf5: True hdf5_flag: r use_metadata: True validate: True workers: 1 cache: False duration_range: [3.0, 24.0] random_utterance: 1.0 max_prompts: 1 prompt_duration_range: [3.0, 3.0] max_resps: 1 p_resp_append: 0.25 sample_type: path # path # speaker sample_order: duration sample_max_duration_batch: 100 tasks_list: [ "tts" ] #, "tts-c", "ns", "sr" ] training: [] validation: [] noise: []