Upload 2 files
Browse files- configuration_e5rope.py +141 -0
- modeling_e5rope.py +1306 -0
configuration_e5rope.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# This file has been modified from the configuration_roformer.py file in the transformers library.
|
| 3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" E5Rope model configuration"""
|
| 17 |
+
|
| 18 |
+
from collections import OrderedDict
|
| 19 |
+
from typing import Mapping
|
| 20 |
+
|
| 21 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 22 |
+
from transformers.onnx import OnnxConfig
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class E5RopeConfig(PretrainedConfig):
|
| 31 |
+
r"""
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
vocab_size (`int`, *optional*, defaults to 50000):
|
| 35 |
+
Vocabulary size of the E5Rope model. Defines the number of different tokens that can be represented by
|
| 36 |
+
the `inputs_ids` passed when calling [`E5RopeModel`] or [`TFE5RopeModel`].
|
| 37 |
+
embedding_size (`int`, *optional*, defaults to None):
|
| 38 |
+
Dimensionality of the encoder layers and the pooler layer. Defaults to the `hidden_size` if not provided.
|
| 39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 40 |
+
Dimension of the encoder layers and the pooler layer.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 44 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 46 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 49 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
| 50 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 51 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 53 |
+
The dropout ratio for the attention probabilities.
|
| 54 |
+
max_position_embeddings (`int`, *optional*, defaults to 1536):
|
| 55 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 56 |
+
just in case (e.g., 512 or 1024 or 1536).
|
| 57 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 58 |
+
The vocabulary size of the `token_type_ids` passed when calling [`E5RopeModel`] or [`TFE5RopeModel`].
|
| 59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 61 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 62 |
+
The epsilon used by the layer normalization layers.
|
| 63 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
| 64 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
| 65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 67 |
+
relevant if `config.is_decoder=True`.
|
| 68 |
+
rotary_value (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether or not apply rotary position embeddings on value layer.
|
| 70 |
+
|
| 71 |
+
rope_theta (`float`, *optional*, defaults to 10000):
|
| 72 |
+
Frequency base for RoPE.
|
| 73 |
+
use_pose (`bool`, *optional*, defaults to `False`):
|
| 74 |
+
Whether or not to use positional skip-wise training for long context. https://arxiv.org/abs/2309.10400
|
| 75 |
+
pose_target_len (`int`, *optional*, defaults to None):
|
| 76 |
+
target context length if use_pose is True
|
| 77 |
+
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
model_type = "e5rope"
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
vocab_size=50000,
|
| 85 |
+
embedding_size=None,
|
| 86 |
+
hidden_size=768,
|
| 87 |
+
num_hidden_layers=12,
|
| 88 |
+
num_attention_heads=12,
|
| 89 |
+
intermediate_size=3072,
|
| 90 |
+
hidden_act="gelu",
|
| 91 |
+
hidden_dropout_prob=0.1,
|
| 92 |
+
attention_probs_dropout_prob=0.1,
|
| 93 |
+
max_position_embeddings=1536,
|
| 94 |
+
type_vocab_size=2,
|
| 95 |
+
initializer_range=0.02,
|
| 96 |
+
layer_norm_eps=1e-12,
|
| 97 |
+
pad_token_id=0,
|
| 98 |
+
rotary_value=False,
|
| 99 |
+
use_cache=True,
|
| 100 |
+
rope_theta=10000,
|
| 101 |
+
use_pose=False,
|
| 102 |
+
pose_target_len=None,
|
| 103 |
+
**kwargs,
|
| 104 |
+
):
|
| 105 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 106 |
+
|
| 107 |
+
self.vocab_size = vocab_size
|
| 108 |
+
self.embedding_size = hidden_size if embedding_size is None else embedding_size
|
| 109 |
+
self.hidden_size = hidden_size
|
| 110 |
+
self.num_hidden_layers = num_hidden_layers
|
| 111 |
+
self.num_attention_heads = num_attention_heads
|
| 112 |
+
self.hidden_act = hidden_act
|
| 113 |
+
self.intermediate_size = intermediate_size
|
| 114 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 115 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 116 |
+
self.max_position_embeddings = max_position_embeddings
|
| 117 |
+
self.type_vocab_size = type_vocab_size
|
| 118 |
+
self.initializer_range = initializer_range
|
| 119 |
+
self.layer_norm_eps = layer_norm_eps
|
| 120 |
+
self.rotary_value = rotary_value
|
| 121 |
+
self.use_cache = use_cache
|
| 122 |
+
self.rope_theta = rope_theta
|
| 123 |
+
self.use_pose = use_pose
|
| 124 |
+
self.pose_target_len = pose_target_len
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class E5RopeOnnxConfig(OnnxConfig):
|
| 128 |
+
@property
|
| 129 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 130 |
+
if self.task == "multiple-choice":
|
| 131 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
| 132 |
+
else:
|
| 133 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
| 134 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
| 135 |
+
return OrderedDict(
|
| 136 |
+
[
|
| 137 |
+
("input_ids", dynamic_axis),
|
| 138 |
+
("attention_mask", dynamic_axis),
|
| 139 |
+
("token_type_ids", dynamic_axis),
|
| 140 |
+
]
|
| 141 |
+
)
|
modeling_e5rope.py
ADDED
|
@@ -0,0 +1,1306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# This file has been modified from the modeling_roformer.py file in the transformers library. The original RoPE implementation has been replaced with the LLaMA style RoPE implementation.
|
| 3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PyTorch E5Rope model."""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import math
|
| 20 |
+
import random
|
| 21 |
+
import os
|
| 22 |
+
from typing import Optional, Tuple, Union
|
| 23 |
+
|
| 24 |
+
import numpy as np
|
| 25 |
+
import torch
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
import xformers.ops as xops
|
| 28 |
+
|
| 29 |
+
from torch import nn
|
| 30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.modeling_outputs import (
|
| 34 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 35 |
+
CausalLMOutputWithCrossAttentions,
|
| 36 |
+
MaskedLMOutput,
|
| 37 |
+
MultipleChoiceModelOutput,
|
| 38 |
+
QuestionAnsweringModelOutput,
|
| 39 |
+
SequenceClassifierOutput,
|
| 40 |
+
TokenClassifierOutput,
|
| 41 |
+
)
|
| 42 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
| 43 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
| 44 |
+
from transformers.utils import (
|
| 45 |
+
add_code_sample_docstrings,
|
| 46 |
+
add_start_docstrings,
|
| 47 |
+
add_start_docstrings_to_model_forward,
|
| 48 |
+
logging,
|
| 49 |
+
replace_return_docstrings,
|
| 50 |
+
)
|
| 51 |
+
from .configuration_e5rope import E5RopeConfig
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class E5RopeRotaryEmbedding(torch.nn.Module):
|
| 59 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 60 |
+
super().__init__()
|
| 61 |
+
|
| 62 |
+
self.dim = dim
|
| 63 |
+
self.max_position_embeddings = max_position_embeddings
|
| 64 |
+
self.base = base
|
| 65 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 66 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 67 |
+
|
| 68 |
+
# Build here to make `torch.jit.trace` work.
|
| 69 |
+
self._set_cos_sin_cache(
|
| 70 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 74 |
+
self.max_seq_len_cached = seq_len
|
| 75 |
+
# t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 76 |
+
t = np.arange(self.max_seq_len_cached, dtype=np.float64)
|
| 77 |
+
t = torch.tensor(t, device=self.inv_freq.device, dtype=torch.float64)
|
| 78 |
+
|
| 79 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 80 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device).to(t.dtype))
|
| 81 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 82 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 83 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 84 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 85 |
+
|
| 86 |
+
def forward(self, x, seq_len=None):
|
| 87 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 88 |
+
if seq_len > self.max_seq_len_cached:
|
| 89 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 90 |
+
|
| 91 |
+
return (
|
| 92 |
+
self.cos_cached[:, :, :, ...].to(dtype=x.dtype),
|
| 93 |
+
self.sin_cached[:, :, :, ...].to(dtype=x.dtype),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 98 |
+
"""
|
| 99 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 100 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 101 |
+
"""
|
| 102 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 103 |
+
if n_rep == 1:
|
| 104 |
+
return hidden_states
|
| 105 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 106 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 107 |
+
|
| 108 |
+
def rotate_half(x):
|
| 109 |
+
"""Rotates half the hidden dims of the input."""
|
| 110 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 111 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 112 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 116 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 117 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 118 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 119 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 120 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 121 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 122 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 123 |
+
return q_embed, k_embed
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def load_tf_weights_in_e5rope(model, config, tf_checkpoint_path):
|
| 127 |
+
"""Load tf checkpoints in a pytorch model."""
|
| 128 |
+
try:
|
| 129 |
+
import re
|
| 130 |
+
|
| 131 |
+
import numpy as np
|
| 132 |
+
import tensorflow as tf
|
| 133 |
+
except ImportError:
|
| 134 |
+
logger.error(
|
| 135 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 136 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 137 |
+
)
|
| 138 |
+
raise
|
| 139 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
| 140 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 141 |
+
# Load weights from TF model
|
| 142 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 143 |
+
names = []
|
| 144 |
+
arrays = []
|
| 145 |
+
for name, shape in init_vars:
|
| 146 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 147 |
+
array = tf.train.load_variable(tf_path, name)
|
| 148 |
+
names.append(name.replace("bert", "e5rope"))
|
| 149 |
+
arrays.append(array)
|
| 150 |
+
|
| 151 |
+
for name, array in zip(names, arrays):
|
| 152 |
+
name = name.split("/")
|
| 153 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
| 154 |
+
# which are not required for using pretrained model
|
| 155 |
+
if any(
|
| 156 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
| 157 |
+
for n in name
|
| 158 |
+
):
|
| 159 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 160 |
+
continue
|
| 161 |
+
pointer = model
|
| 162 |
+
for m_name in name:
|
| 163 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
| 164 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
| 165 |
+
else:
|
| 166 |
+
scope_names = [m_name]
|
| 167 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
| 168 |
+
pointer = getattr(pointer, "weight")
|
| 169 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
| 170 |
+
pointer = getattr(pointer, "bias")
|
| 171 |
+
elif scope_names[0] == "output_weights":
|
| 172 |
+
pointer = getattr(pointer, "weight")
|
| 173 |
+
elif scope_names[0] == "squad":
|
| 174 |
+
pointer = getattr(pointer, "classifier")
|
| 175 |
+
else:
|
| 176 |
+
try:
|
| 177 |
+
pointer = getattr(pointer, scope_names[0])
|
| 178 |
+
except AttributeError:
|
| 179 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 180 |
+
continue
|
| 181 |
+
if len(scope_names) >= 2:
|
| 182 |
+
num = int(scope_names[1])
|
| 183 |
+
pointer = pointer[num]
|
| 184 |
+
if m_name[-11:] == "_embeddings":
|
| 185 |
+
pointer = getattr(pointer, "weight")
|
| 186 |
+
elif m_name == "kernel":
|
| 187 |
+
array = np.transpose(array)
|
| 188 |
+
try:
|
| 189 |
+
if not pointer.shape == array.shape:
|
| 190 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
| 191 |
+
except AssertionError as e:
|
| 192 |
+
e.args += (pointer.shape, array.shape)
|
| 193 |
+
raise
|
| 194 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 195 |
+
pointer.data = torch.from_numpy(array)
|
| 196 |
+
return model
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class E5RopeEmbeddings(nn.Module):
|
| 200 |
+
"""Construct the embeddings from word and token_type embeddings."""
|
| 201 |
+
|
| 202 |
+
def __init__(self, config):
|
| 203 |
+
super().__init__()
|
| 204 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
| 205 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
| 206 |
+
|
| 207 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 208 |
+
# any TensorFlow checkpoint file
|
| 209 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
| 210 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 211 |
+
|
| 212 |
+
def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
|
| 213 |
+
if input_ids is not None:
|
| 214 |
+
input_shape = input_ids.size()
|
| 215 |
+
else:
|
| 216 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 217 |
+
|
| 218 |
+
if inputs_embeds is None:
|
| 219 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 220 |
+
|
| 221 |
+
if token_type_ids is None:
|
| 222 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device)
|
| 223 |
+
|
| 224 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 225 |
+
|
| 226 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 227 |
+
|
| 228 |
+
embeddings = self.LayerNorm(embeddings)
|
| 229 |
+
embeddings = self.dropout(embeddings)
|
| 230 |
+
return embeddings
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class E5RopeSelfAttention(nn.Module):
|
| 234 |
+
def __init__(self, config):
|
| 235 |
+
super().__init__()
|
| 236 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 237 |
+
raise ValueError(
|
| 238 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 239 |
+
f"heads ({config.num_attention_heads})"
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
self.num_attention_heads = config.num_attention_heads
|
| 243 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 244 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 245 |
+
|
| 246 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 247 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 248 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 249 |
+
|
| 250 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 251 |
+
self.is_decoder = config.is_decoder
|
| 252 |
+
|
| 253 |
+
self.config = config
|
| 254 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 255 |
+
self.rope_theta = config.rope_theta
|
| 256 |
+
|
| 257 |
+
self.rotary_emb = E5RopeRotaryEmbedding(
|
| 258 |
+
self.attention_head_size,
|
| 259 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 260 |
+
base=self.rope_theta,
|
| 261 |
+
)
|
| 262 |
+
# self.forward = self.normal_forward
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def transpose_for_scores(self, x):
|
| 266 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 267 |
+
x = x.view(*new_x_shape)
|
| 268 |
+
return x.permute(0, 2, 1, 3)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def forward(
|
| 272 |
+
self,
|
| 273 |
+
hidden_states,
|
| 274 |
+
attention_mask=None,
|
| 275 |
+
position_ids=None,
|
| 276 |
+
head_mask=None,
|
| 277 |
+
encoder_hidden_states=None,
|
| 278 |
+
encoder_attention_mask=None,
|
| 279 |
+
past_key_value=None,
|
| 280 |
+
output_attentions=False,
|
| 281 |
+
):
|
| 282 |
+
mixed_query_layer = self.query(hidden_states)
|
| 283 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 284 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 285 |
+
# and values come from an encoder; the attention mask needs to be
|
| 286 |
+
# such that the encoder's padding tokens are not attended to.
|
| 287 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 288 |
+
|
| 289 |
+
if is_cross_attention and past_key_value is not None:
|
| 290 |
+
# reuse k,v, cross_attentions
|
| 291 |
+
key_layer = past_key_value[0]
|
| 292 |
+
value_layer = past_key_value[1]
|
| 293 |
+
attention_mask = encoder_attention_mask
|
| 294 |
+
elif is_cross_attention:
|
| 295 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 296 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 297 |
+
attention_mask = encoder_attention_mask
|
| 298 |
+
else:
|
| 299 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 300 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 301 |
+
|
| 302 |
+
kv_seq_len = key_layer.shape[-2]
|
| 303 |
+
if past_key_value is not None:
|
| 304 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 305 |
+
|
| 306 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
| 307 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
| 308 |
+
|
| 309 |
+
if past_key_value is not None:
|
| 310 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 311 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 312 |
+
|
| 313 |
+
if self.is_decoder:
|
| 314 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 315 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 316 |
+
# key/value_states (first "if" case)
|
| 317 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 318 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 319 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 320 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 321 |
+
past_key_value = (key_layer, value_layer)
|
| 322 |
+
|
| 323 |
+
bsz, n_heads, seq_len, head_dim = query_layer.shape
|
| 324 |
+
|
| 325 |
+
# get each seq len
|
| 326 |
+
tmp_attention_mask = attention_mask.squeeze()
|
| 327 |
+
if tmp_attention_mask.dim() == 1:
|
| 328 |
+
tmp_attention_mask = tmp_attention_mask.unsqueeze(0)
|
| 329 |
+
each_seq_len = torch.sum(tmp_attention_mask == 0, dim=-1)
|
| 330 |
+
original_len = torch.tensor(512)
|
| 331 |
+
|
| 332 |
+
### attention scaling for better length extrapolation ###
|
| 333 |
+
### https://arxiv.org/abs/2202.12172 ; https://kexue.fm/archives/8823 ###
|
| 334 |
+
attn_factors = torch.log(each_seq_len) / torch.log(original_len)
|
| 335 |
+
attn_factors = torch.clamp(attn_factors, min=1.0) # Ensure a minimum value of 1
|
| 336 |
+
attn_factors = attn_factors.view(-1, 1, 1, 1)
|
| 337 |
+
query_layer *= attn_factors
|
| 338 |
+
|
| 339 |
+
attention_mask = attention_mask.expand(bsz, n_heads, seq_len, seq_len).to(dtype=query_layer.dtype)
|
| 340 |
+
attn_output = xops.memory_efficient_attention(
|
| 341 |
+
query_layer.transpose(1, 2), key_layer.transpose(1, 2), value_layer.transpose(1, 2),
|
| 342 |
+
attn_bias=attention_mask, p=(self.dropout.p if self.training else 0)
|
| 343 |
+
).reshape(bsz, seq_len, n_heads * head_dim)
|
| 344 |
+
|
| 345 |
+
if output_attentions is True:
|
| 346 |
+
raise NotImplementedError('output_attentions is not supported for xformers attention')
|
| 347 |
+
|
| 348 |
+
return (attn_output,)
|
| 349 |
+
|
| 350 |
+
def normal_forward(
|
| 351 |
+
self,
|
| 352 |
+
hidden_states,
|
| 353 |
+
attention_mask=None,
|
| 354 |
+
position_ids=None,
|
| 355 |
+
head_mask=None,
|
| 356 |
+
encoder_hidden_states=None,
|
| 357 |
+
encoder_attention_mask=None,
|
| 358 |
+
past_key_value=None,
|
| 359 |
+
output_attentions=False,
|
| 360 |
+
):
|
| 361 |
+
mixed_query_layer = self.query(hidden_states)
|
| 362 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 363 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 364 |
+
# and values come from an encoder; the attention mask needs to be
|
| 365 |
+
# such that the encoder's padding tokens are not attended to.
|
| 366 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 367 |
+
|
| 368 |
+
if is_cross_attention and past_key_value is not None:
|
| 369 |
+
# reuse k,v, cross_attentions
|
| 370 |
+
key_layer = past_key_value[0]
|
| 371 |
+
value_layer = past_key_value[1]
|
| 372 |
+
attention_mask = encoder_attention_mask
|
| 373 |
+
elif is_cross_attention:
|
| 374 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 375 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 376 |
+
attention_mask = encoder_attention_mask
|
| 377 |
+
else:
|
| 378 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 379 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 380 |
+
|
| 381 |
+
kv_seq_len = key_layer.shape[-2]
|
| 382 |
+
if past_key_value is not None:
|
| 383 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 384 |
+
|
| 385 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
| 386 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
| 387 |
+
|
| 388 |
+
if past_key_value is not None:
|
| 389 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 390 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 391 |
+
|
| 392 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 393 |
+
|
| 394 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 395 |
+
if attention_mask is not None:
|
| 396 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 397 |
+
attention_scores = attention_scores + attention_mask
|
| 398 |
+
|
| 399 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 400 |
+
|
| 401 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 402 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 403 |
+
attention_probs = self.dropout(attention_probs)
|
| 404 |
+
|
| 405 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 406 |
+
|
| 407 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 408 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 409 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 410 |
+
|
| 411 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 412 |
+
|
| 413 |
+
if self.is_decoder:
|
| 414 |
+
outputs = outputs + (past_key_value,)
|
| 415 |
+
return outputs
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->E5Rope
|
| 419 |
+
class E5RopeSelfOutput(nn.Module):
|
| 420 |
+
def __init__(self, config):
|
| 421 |
+
super().__init__()
|
| 422 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 423 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 424 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 425 |
+
|
| 426 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 427 |
+
hidden_states = self.dense(hidden_states)
|
| 428 |
+
hidden_states = self.dropout(hidden_states)
|
| 429 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 430 |
+
return hidden_states
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
class E5RopeAttention(nn.Module):
|
| 434 |
+
def __init__(self, config):
|
| 435 |
+
super().__init__()
|
| 436 |
+
self.self = E5RopeSelfAttention(config)
|
| 437 |
+
self.output = E5RopeSelfOutput(config)
|
| 438 |
+
self.pruned_heads = set()
|
| 439 |
+
|
| 440 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
|
| 441 |
+
def prune_heads(self, heads):
|
| 442 |
+
if len(heads) == 0:
|
| 443 |
+
return
|
| 444 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 445 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
# Prune linear layers
|
| 449 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 450 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 451 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 452 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 453 |
+
|
| 454 |
+
# Update hyper params and store pruned heads
|
| 455 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 456 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 457 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 458 |
+
|
| 459 |
+
# End Copy
|
| 460 |
+
def forward(
|
| 461 |
+
self,
|
| 462 |
+
hidden_states,
|
| 463 |
+
attention_mask=None,
|
| 464 |
+
position_ids=None,
|
| 465 |
+
head_mask=None,
|
| 466 |
+
encoder_hidden_states=None,
|
| 467 |
+
encoder_attention_mask=None,
|
| 468 |
+
past_key_value=None,
|
| 469 |
+
output_attentions=False,
|
| 470 |
+
):
|
| 471 |
+
self_outputs = self.self(
|
| 472 |
+
hidden_states,
|
| 473 |
+
attention_mask,
|
| 474 |
+
position_ids,
|
| 475 |
+
head_mask,
|
| 476 |
+
encoder_hidden_states,
|
| 477 |
+
encoder_attention_mask,
|
| 478 |
+
past_key_value,
|
| 479 |
+
output_attentions,
|
| 480 |
+
)
|
| 481 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 482 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 483 |
+
return outputs
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->E5Rope
|
| 487 |
+
class E5RopeIntermediate(nn.Module):
|
| 488 |
+
def __init__(self, config):
|
| 489 |
+
super().__init__()
|
| 490 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 491 |
+
if isinstance(config.hidden_act, str):
|
| 492 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 493 |
+
else:
|
| 494 |
+
self.intermediate_act_fn = config.hidden_act
|
| 495 |
+
|
| 496 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 497 |
+
hidden_states = self.dense(hidden_states)
|
| 498 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 499 |
+
return hidden_states
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->E5Rope
|
| 503 |
+
class E5RopeOutput(nn.Module):
|
| 504 |
+
def __init__(self, config):
|
| 505 |
+
super().__init__()
|
| 506 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 507 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 508 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 509 |
+
|
| 510 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 511 |
+
hidden_states = self.dense(hidden_states)
|
| 512 |
+
hidden_states = self.dropout(hidden_states)
|
| 513 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 514 |
+
return hidden_states
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class E5RopeLayer(nn.Module):
|
| 518 |
+
def __init__(self, config):
|
| 519 |
+
super().__init__()
|
| 520 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 521 |
+
self.seq_len_dim = 1
|
| 522 |
+
self.attention = E5RopeAttention(config)
|
| 523 |
+
self.is_decoder = config.is_decoder
|
| 524 |
+
self.add_cross_attention = config.add_cross_attention
|
| 525 |
+
if self.add_cross_attention:
|
| 526 |
+
if not self.is_decoder:
|
| 527 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
| 528 |
+
self.crossattention = E5RopeAttention(config)
|
| 529 |
+
self.intermediate = E5RopeIntermediate(config)
|
| 530 |
+
self.output = E5RopeOutput(config)
|
| 531 |
+
|
| 532 |
+
def forward(
|
| 533 |
+
self,
|
| 534 |
+
hidden_states,
|
| 535 |
+
attention_mask=None,
|
| 536 |
+
position_ids=None,
|
| 537 |
+
head_mask=None,
|
| 538 |
+
encoder_hidden_states=None,
|
| 539 |
+
encoder_attention_mask=None,
|
| 540 |
+
past_key_value=None,
|
| 541 |
+
output_attentions=False,
|
| 542 |
+
):
|
| 543 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 544 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 545 |
+
self_attention_outputs = self.attention(
|
| 546 |
+
hidden_states,
|
| 547 |
+
attention_mask,
|
| 548 |
+
position_ids,
|
| 549 |
+
head_mask,
|
| 550 |
+
output_attentions=output_attentions,
|
| 551 |
+
past_key_value=self_attn_past_key_value,
|
| 552 |
+
)
|
| 553 |
+
attention_output = self_attention_outputs[0]
|
| 554 |
+
|
| 555 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 556 |
+
if self.is_decoder:
|
| 557 |
+
outputs = self_attention_outputs[1:-1]
|
| 558 |
+
present_key_value = self_attention_outputs[-1]
|
| 559 |
+
else:
|
| 560 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 561 |
+
|
| 562 |
+
cross_attn_present_key_value = None
|
| 563 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 564 |
+
if not hasattr(self, "crossattention"):
|
| 565 |
+
raise ValueError(
|
| 566 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention "
|
| 567 |
+
"layers by setting `config.add_cross_attention=True`"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 571 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
| 572 |
+
cross_attention_outputs = self.crossattention(
|
| 573 |
+
attention_output,
|
| 574 |
+
attention_mask,
|
| 575 |
+
position_ids,
|
| 576 |
+
head_mask,
|
| 577 |
+
encoder_hidden_states,
|
| 578 |
+
encoder_attention_mask,
|
| 579 |
+
cross_attn_past_key_value,
|
| 580 |
+
output_attentions,
|
| 581 |
+
)
|
| 582 |
+
attention_output = cross_attention_outputs[0]
|
| 583 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 584 |
+
|
| 585 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 586 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 587 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 588 |
+
|
| 589 |
+
layer_output = apply_chunking_to_forward(
|
| 590 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 591 |
+
)
|
| 592 |
+
outputs = (layer_output,) + outputs
|
| 593 |
+
|
| 594 |
+
# if decoder, return the attn key/values as the last output
|
| 595 |
+
if self.is_decoder:
|
| 596 |
+
outputs = outputs + (present_key_value,)
|
| 597 |
+
|
| 598 |
+
return outputs
|
| 599 |
+
|
| 600 |
+
def feed_forward_chunk(self, attention_output):
|
| 601 |
+
intermediate_output = self.intermediate(attention_output)
|
| 602 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 603 |
+
return layer_output
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
class E5RopeEncoder(nn.Module):
|
| 607 |
+
def __init__(self, config):
|
| 608 |
+
super().__init__()
|
| 609 |
+
self.config = config
|
| 610 |
+
self.layer = nn.ModuleList([E5RopeLayer(config) for _ in range(config.num_hidden_layers)])
|
| 611 |
+
self.gradient_checkpointing = False
|
| 612 |
+
|
| 613 |
+
def forward(
|
| 614 |
+
self,
|
| 615 |
+
hidden_states,
|
| 616 |
+
attention_mask=None,
|
| 617 |
+
position_ids=None,
|
| 618 |
+
head_mask=None,
|
| 619 |
+
encoder_hidden_states=None,
|
| 620 |
+
encoder_attention_mask=None,
|
| 621 |
+
past_key_values=None,
|
| 622 |
+
use_cache=None,
|
| 623 |
+
output_attentions=False,
|
| 624 |
+
output_hidden_states=False,
|
| 625 |
+
return_dict=True,
|
| 626 |
+
):
|
| 627 |
+
if self.gradient_checkpointing and self.training:
|
| 628 |
+
if use_cache:
|
| 629 |
+
logger.warning_once(
|
| 630 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 631 |
+
)
|
| 632 |
+
use_cache = False
|
| 633 |
+
all_hidden_states = () if output_hidden_states else None
|
| 634 |
+
all_self_attentions = () if output_attentions else None
|
| 635 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 636 |
+
|
| 637 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 638 |
+
|
| 639 |
+
# [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head]
|
| 640 |
+
# sinusoidal_pos = self.embed_positions(hidden_states.shape[:-1], past_key_values_length)[None, None, :, :]
|
| 641 |
+
|
| 642 |
+
next_decoder_cache = () if use_cache else None
|
| 643 |
+
for i, layer_module in enumerate(self.layer):
|
| 644 |
+
if output_hidden_states:
|
| 645 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 646 |
+
|
| 647 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 648 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 649 |
+
|
| 650 |
+
if self.gradient_checkpointing and self.training:
|
| 651 |
+
|
| 652 |
+
def create_custom_forward(module):
|
| 653 |
+
def custom_forward(*inputs):
|
| 654 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 655 |
+
|
| 656 |
+
return custom_forward
|
| 657 |
+
|
| 658 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 659 |
+
create_custom_forward(layer_module),
|
| 660 |
+
hidden_states,
|
| 661 |
+
attention_mask,
|
| 662 |
+
position_ids,
|
| 663 |
+
layer_head_mask,
|
| 664 |
+
encoder_hidden_states,
|
| 665 |
+
encoder_attention_mask,
|
| 666 |
+
)
|
| 667 |
+
else:
|
| 668 |
+
layer_outputs = layer_module(
|
| 669 |
+
hidden_states,
|
| 670 |
+
attention_mask,
|
| 671 |
+
position_ids,
|
| 672 |
+
layer_head_mask,
|
| 673 |
+
encoder_hidden_states,
|
| 674 |
+
encoder_attention_mask,
|
| 675 |
+
past_key_value,
|
| 676 |
+
output_attentions,
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
hidden_states = layer_outputs[0]
|
| 680 |
+
if use_cache:
|
| 681 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 682 |
+
if output_attentions:
|
| 683 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 684 |
+
if self.config.add_cross_attention:
|
| 685 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 686 |
+
|
| 687 |
+
if output_hidden_states:
|
| 688 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 689 |
+
|
| 690 |
+
if not return_dict:
|
| 691 |
+
return tuple(
|
| 692 |
+
v
|
| 693 |
+
for v in [
|
| 694 |
+
hidden_states,
|
| 695 |
+
next_decoder_cache,
|
| 696 |
+
all_hidden_states,
|
| 697 |
+
all_self_attentions,
|
| 698 |
+
all_cross_attentions,
|
| 699 |
+
]
|
| 700 |
+
if v is not None
|
| 701 |
+
)
|
| 702 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 703 |
+
last_hidden_state=hidden_states,
|
| 704 |
+
past_key_values=next_decoder_cache,
|
| 705 |
+
hidden_states=all_hidden_states,
|
| 706 |
+
attentions=all_self_attentions,
|
| 707 |
+
cross_attentions=all_cross_attentions,
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
class E5RopePredictionHeadTransform(nn.Module):
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__()
|
| 714 |
+
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
| 715 |
+
if isinstance(config.hidden_act, str):
|
| 716 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 717 |
+
else:
|
| 718 |
+
self.transform_act_fn = config.hidden_act
|
| 719 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
| 720 |
+
|
| 721 |
+
def forward(self, hidden_states):
|
| 722 |
+
hidden_states = self.dense(hidden_states)
|
| 723 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 724 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 725 |
+
return hidden_states
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
class E5RopeLMPredictionHead(nn.Module):
|
| 729 |
+
def __init__(self, config):
|
| 730 |
+
super().__init__()
|
| 731 |
+
self.transform = E5RopePredictionHeadTransform(config)
|
| 732 |
+
|
| 733 |
+
# The output weights are the same as the input embeddings, but there is
|
| 734 |
+
# an output-only bias for each token.
|
| 735 |
+
self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False)
|
| 736 |
+
|
| 737 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 738 |
+
|
| 739 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 740 |
+
self.decoder.bias = self.bias
|
| 741 |
+
|
| 742 |
+
def forward(self, hidden_states):
|
| 743 |
+
hidden_states = self.transform(hidden_states)
|
| 744 |
+
hidden_states = self.decoder(hidden_states)
|
| 745 |
+
return hidden_states
|
| 746 |
+
|
| 747 |
+
|
| 748 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->E5Rope
|
| 749 |
+
class E5RopeOnlyMLMHead(nn.Module):
|
| 750 |
+
def __init__(self, config):
|
| 751 |
+
super().__init__()
|
| 752 |
+
self.predictions = E5RopeLMPredictionHead(config)
|
| 753 |
+
|
| 754 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
| 755 |
+
prediction_scores = self.predictions(sequence_output)
|
| 756 |
+
return prediction_scores
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
class E5RopePreTrainedModel(PreTrainedModel):
|
| 760 |
+
"""
|
| 761 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 762 |
+
models.
|
| 763 |
+
"""
|
| 764 |
+
|
| 765 |
+
config_class = E5RopeConfig
|
| 766 |
+
load_tf_weights = load_tf_weights_in_e5rope
|
| 767 |
+
base_model_prefix = "e5rope"
|
| 768 |
+
supports_gradient_checkpointing = True
|
| 769 |
+
|
| 770 |
+
def _init_weights(self, module):
|
| 771 |
+
"""Initialize the weights"""
|
| 772 |
+
if isinstance(module, nn.Linear):
|
| 773 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 774 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 775 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 776 |
+
if module.bias is not None:
|
| 777 |
+
module.bias.data.zero_()
|
| 778 |
+
elif isinstance(module, E5RopeRotaryEmbedding):
|
| 779 |
+
pass
|
| 780 |
+
elif isinstance(module, nn.Embedding):
|
| 781 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 782 |
+
if module.padding_idx is not None:
|
| 783 |
+
module.weight.data[module.padding_idx].zero_()
|
| 784 |
+
elif isinstance(module, nn.LayerNorm):
|
| 785 |
+
module.bias.data.zero_()
|
| 786 |
+
module.weight.data.fill_(1.0)
|
| 787 |
+
|
| 788 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 789 |
+
if isinstance(module, E5RopeEncoder):
|
| 790 |
+
module.gradient_checkpointing = value
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
E5ROPE_START_DOCSTRING = r"""
|
| 794 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
| 795 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 796 |
+
behavior.
|
| 797 |
+
|
| 798 |
+
Parameters:
|
| 799 |
+
config ([`E5RopeConfig`]): Model configuration class with all the parameters of the model.
|
| 800 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 801 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
E5ROPE_INPUTS_DOCSTRING = r"""
|
| 805 |
+
Args:
|
| 806 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 807 |
+
Indices of input sequence tokens in the vocabulary.
|
| 808 |
+
|
| 809 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 810 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 811 |
+
|
| 812 |
+
[What are input IDs?](../glossary#input-ids)
|
| 813 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 814 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 815 |
+
|
| 816 |
+
- 1 for tokens that are **not masked**,
|
| 817 |
+
- 0 for tokens that are **masked**.
|
| 818 |
+
|
| 819 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 820 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 821 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 822 |
+
1]`:
|
| 823 |
+
|
| 824 |
+
- 0 corresponds to a *sentence A* token,
|
| 825 |
+
- 1 corresponds to a *sentence B* token.
|
| 826 |
+
|
| 827 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 828 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 829 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 830 |
+
|
| 831 |
+
- 1 indicates the head is **not masked**,
|
| 832 |
+
- 0 indicates the head is **masked**.
|
| 833 |
+
|
| 834 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 835 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 836 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
| 837 |
+
model's internal embedding lookup matrix.
|
| 838 |
+
output_attentions (`bool`, *optional*):
|
| 839 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 840 |
+
tensors for more detail.
|
| 841 |
+
output_hidden_states (`bool`, *optional*):
|
| 842 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 843 |
+
more detail.
|
| 844 |
+
return_dict (`bool`, *optional*):
|
| 845 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 846 |
+
"""
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
@add_start_docstrings(
|
| 850 |
+
"The bare E5Rope Model transformer outputting raw hidden-states without any specific head on top.",
|
| 851 |
+
E5ROPE_START_DOCSTRING,
|
| 852 |
+
)
|
| 853 |
+
class E5RopeModel(E5RopePreTrainedModel):
|
| 854 |
+
"""
|
| 855 |
+
|
| 856 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 857 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
| 858 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
| 859 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 860 |
+
|
| 861 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 862 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 863 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 864 |
+
"""
|
| 865 |
+
|
| 866 |
+
def __init__(self, config):
|
| 867 |
+
super().__init__(config)
|
| 868 |
+
self.config = config
|
| 869 |
+
self.embeddings = E5RopeEmbeddings(config)
|
| 870 |
+
|
| 871 |
+
if config.embedding_size != config.hidden_size:
|
| 872 |
+
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
|
| 873 |
+
|
| 874 |
+
self.encoder = E5RopeEncoder(config)
|
| 875 |
+
|
| 876 |
+
# Initialize weights and apply final processing
|
| 877 |
+
self.post_init()
|
| 878 |
+
|
| 879 |
+
def get_input_embeddings(self):
|
| 880 |
+
return self.embeddings.word_embeddings
|
| 881 |
+
|
| 882 |
+
def set_input_embeddings(self, value):
|
| 883 |
+
self.embeddings.word_embeddings = value
|
| 884 |
+
|
| 885 |
+
def _prune_heads(self, heads_to_prune):
|
| 886 |
+
"""
|
| 887 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 888 |
+
class PreTrainedModel
|
| 889 |
+
"""
|
| 890 |
+
for layer, heads in heads_to_prune.items():
|
| 891 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 892 |
+
|
| 893 |
+
@add_start_docstrings_to_model_forward(E5ROPE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 894 |
+
def forward(
|
| 895 |
+
self,
|
| 896 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 897 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 898 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 899 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 900 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 901 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 902 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 903 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 904 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 905 |
+
use_cache: Optional[bool] = None,
|
| 906 |
+
output_attentions: Optional[bool] = None,
|
| 907 |
+
output_hidden_states: Optional[bool] = None,
|
| 908 |
+
return_dict: Optional[bool] = None,
|
| 909 |
+
) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple[torch.Tensor]]:
|
| 910 |
+
r"""
|
| 911 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 912 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 913 |
+
the model is configured as a decoder.
|
| 914 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 915 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 916 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 917 |
+
|
| 918 |
+
- 1 for tokens that are **not masked**,
|
| 919 |
+
- 0 for tokens that are **masked**.
|
| 920 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 921 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 922 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 923 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 924 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 925 |
+
use_cache (`bool`, *optional*):
|
| 926 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 927 |
+
`past_key_values`).
|
| 928 |
+
"""
|
| 929 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 930 |
+
output_hidden_states = (
|
| 931 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 932 |
+
)
|
| 933 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 934 |
+
|
| 935 |
+
if self.config.is_decoder:
|
| 936 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 937 |
+
else:
|
| 938 |
+
use_cache = False
|
| 939 |
+
|
| 940 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 941 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 942 |
+
elif input_ids is not None:
|
| 943 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 944 |
+
input_shape = input_ids.size()
|
| 945 |
+
elif inputs_embeds is not None:
|
| 946 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 947 |
+
else:
|
| 948 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 949 |
+
|
| 950 |
+
batch_size, seq_length = input_shape
|
| 951 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 952 |
+
|
| 953 |
+
# past_key_values_length
|
| 954 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 955 |
+
|
| 956 |
+
if attention_mask is None:
|
| 957 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 958 |
+
if token_type_ids is None:
|
| 959 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 960 |
+
|
| 961 |
+
if position_ids is None:
|
| 962 |
+
position_ids = torch.arange(
|
| 963 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 964 |
+
)
|
| 965 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 966 |
+
|
| 967 |
+
### inserted code for positional skip-wise training ###
|
| 968 |
+
### https://arxiv.org/abs/2309.10400 ###
|
| 969 |
+
if self.config.use_pose == True and self.training:
|
| 970 |
+
pos_list = []
|
| 971 |
+
for i in range(batch_size):
|
| 972 |
+
bias = random.randint(-seq_length, self.config.pose_target_len)
|
| 973 |
+
bias = min(bias, self.config.pose_target_len - seq_length)
|
| 974 |
+
bias = max(bias, 0)
|
| 975 |
+
pos = torch.arange(
|
| 976 |
+
past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device
|
| 977 |
+
)
|
| 978 |
+
bias_st_ids = random.randint(min(64, seq_length-1), seq_length - 1) # do not skip very short sequences
|
| 979 |
+
pos[bias_st_ids:] += bias
|
| 980 |
+
pos_list.append(pos)
|
| 981 |
+
position_ids = torch.stack(pos_list, dim=0)
|
| 982 |
+
|
| 983 |
+
#######################################################
|
| 984 |
+
|
| 985 |
+
else:
|
| 986 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 987 |
+
|
| 988 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 989 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 990 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 991 |
+
|
| 992 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 993 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 994 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 995 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 996 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 997 |
+
if encoder_attention_mask is None:
|
| 998 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 999 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 1000 |
+
else:
|
| 1001 |
+
encoder_extended_attention_mask = None
|
| 1002 |
+
|
| 1003 |
+
# Prepare head mask if needed
|
| 1004 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1005 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1006 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1007 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1008 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1009 |
+
|
| 1010 |
+
embedding_output = self.embeddings(
|
| 1011 |
+
input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
| 1012 |
+
)
|
| 1013 |
+
if hasattr(self, "embeddings_project"):
|
| 1014 |
+
embedding_output = self.embeddings_project(embedding_output)
|
| 1015 |
+
|
| 1016 |
+
encoder_outputs = self.encoder(
|
| 1017 |
+
embedding_output,
|
| 1018 |
+
attention_mask=extended_attention_mask,
|
| 1019 |
+
position_ids=position_ids,
|
| 1020 |
+
head_mask=head_mask,
|
| 1021 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1022 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1023 |
+
past_key_values=past_key_values,
|
| 1024 |
+
use_cache=use_cache,
|
| 1025 |
+
output_attentions=output_attentions,
|
| 1026 |
+
output_hidden_states=output_hidden_states,
|
| 1027 |
+
return_dict=return_dict,
|
| 1028 |
+
)
|
| 1029 |
+
sequence_output = encoder_outputs[0]
|
| 1030 |
+
|
| 1031 |
+
if not return_dict:
|
| 1032 |
+
return (sequence_output,) + encoder_outputs[1:]
|
| 1033 |
+
|
| 1034 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1035 |
+
last_hidden_state=sequence_output,
|
| 1036 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1037 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1038 |
+
attentions=encoder_outputs.attentions,
|
| 1039 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
|
| 1043 |
+
@add_start_docstrings("""E5Rope Model with a `language modeling` head on top.""", E5ROPE_START_DOCSTRING)
|
| 1044 |
+
class E5RopeForMaskedLM(E5RopePreTrainedModel):
|
| 1045 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
| 1046 |
+
|
| 1047 |
+
def __init__(self, config):
|
| 1048 |
+
super().__init__(config)
|
| 1049 |
+
|
| 1050 |
+
if config.is_decoder:
|
| 1051 |
+
logger.warning(
|
| 1052 |
+
"If you want to use `E5RopeForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1053 |
+
"bi-directional self-attention."
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
self.e5rope = E5RopeModel(config)
|
| 1057 |
+
self.cls = E5RopeOnlyMLMHead(config)
|
| 1058 |
+
|
| 1059 |
+
# Initialize weights and apply final processing
|
| 1060 |
+
self.post_init()
|
| 1061 |
+
|
| 1062 |
+
def get_output_embeddings(self):
|
| 1063 |
+
return self.cls.predictions.decoder
|
| 1064 |
+
|
| 1065 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1066 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1067 |
+
|
| 1068 |
+
@add_start_docstrings_to_model_forward(E5ROPE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1069 |
+
def forward(
|
| 1070 |
+
self,
|
| 1071 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1072 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1073 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1074 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1076 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1077 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1078 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1079 |
+
output_attentions: Optional[bool] = None,
|
| 1080 |
+
output_hidden_states: Optional[bool] = None,
|
| 1081 |
+
return_dict: Optional[bool] = None,
|
| 1082 |
+
) -> Union[MaskedLMOutput, Tuple[torch.Tensor]]:
|
| 1083 |
+
r"""
|
| 1084 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1085 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1086 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1087 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1088 |
+
"""
|
| 1089 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1090 |
+
|
| 1091 |
+
outputs = self.e5rope(
|
| 1092 |
+
input_ids,
|
| 1093 |
+
attention_mask=attention_mask,
|
| 1094 |
+
token_type_ids=token_type_ids,
|
| 1095 |
+
head_mask=head_mask,
|
| 1096 |
+
inputs_embeds=inputs_embeds,
|
| 1097 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1098 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1099 |
+
output_attentions=output_attentions,
|
| 1100 |
+
output_hidden_states=output_hidden_states,
|
| 1101 |
+
return_dict=return_dict,
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
sequence_output = outputs[0]
|
| 1105 |
+
prediction_scores = self.cls(sequence_output)
|
| 1106 |
+
|
| 1107 |
+
masked_lm_loss = None
|
| 1108 |
+
if labels is not None:
|
| 1109 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 1110 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1111 |
+
|
| 1112 |
+
if not return_dict:
|
| 1113 |
+
output = (prediction_scores,) + outputs[1:]
|
| 1114 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1115 |
+
|
| 1116 |
+
return MaskedLMOutput(
|
| 1117 |
+
loss=masked_lm_loss,
|
| 1118 |
+
logits=prediction_scores,
|
| 1119 |
+
hidden_states=outputs.hidden_states,
|
| 1120 |
+
attentions=outputs.attentions,
|
| 1121 |
+
)
|
| 1122 |
+
|
| 1123 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
| 1124 |
+
input_shape = input_ids.shape
|
| 1125 |
+
effective_batch_size = input_shape[0]
|
| 1126 |
+
|
| 1127 |
+
# add a dummy token
|
| 1128 |
+
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
|
| 1129 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
| 1130 |
+
dummy_token = torch.full(
|
| 1131 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
| 1132 |
+
)
|
| 1133 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 1134 |
+
|
| 1135 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
@add_start_docstrings(
|
| 1139 |
+
"""E5Rope Model with a `language modeling` head on top for CLM fine-tuning.""", E5ROPE_START_DOCSTRING
|
| 1140 |
+
)
|
| 1141 |
+
class E5RopeForCausalLM(E5RopePreTrainedModel):
|
| 1142 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
| 1143 |
+
|
| 1144 |
+
def __init__(self, config):
|
| 1145 |
+
super().__init__(config)
|
| 1146 |
+
|
| 1147 |
+
if not config.is_decoder:
|
| 1148 |
+
logger.warning("If you want to use `E5RopeForCausalLM` as a standalone, add `is_decoder=True.`")
|
| 1149 |
+
|
| 1150 |
+
self.e5rope = E5RopeModel(config)
|
| 1151 |
+
self.cls = E5RopeOnlyMLMHead(config)
|
| 1152 |
+
|
| 1153 |
+
# Initialize weights and apply final processing
|
| 1154 |
+
self.post_init()
|
| 1155 |
+
|
| 1156 |
+
def get_output_embeddings(self):
|
| 1157 |
+
return self.cls.predictions.decoder
|
| 1158 |
+
|
| 1159 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1160 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1161 |
+
|
| 1162 |
+
@add_start_docstrings_to_model_forward(E5ROPE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1163 |
+
|
| 1164 |
+
def forward(
|
| 1165 |
+
self,
|
| 1166 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1167 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1168 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1169 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1170 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1171 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1172 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1173 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1174 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 1175 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1176 |
+
use_cache: Optional[bool] = None,
|
| 1177 |
+
output_attentions: Optional[bool] = None,
|
| 1178 |
+
output_hidden_states: Optional[bool] = None,
|
| 1179 |
+
return_dict: Optional[bool] = None,
|
| 1180 |
+
) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.Tensor]]:
|
| 1181 |
+
r"""
|
| 1182 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1183 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 1184 |
+
the model is configured as a decoder.
|
| 1185 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1186 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 1187 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 1188 |
+
|
| 1189 |
+
- 1 for tokens that are **not masked**,
|
| 1190 |
+
- 0 for tokens that are **masked**.
|
| 1191 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 1192 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 1193 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1194 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1195 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1196 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1197 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
| 1198 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
| 1199 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
| 1200 |
+
use_cache (`bool`, *optional*):
|
| 1201 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1202 |
+
`past_key_values`).
|
| 1203 |
+
|
| 1204 |
+
Returns:
|
| 1205 |
+
|
| 1206 |
+
Example:
|
| 1207 |
+
|
| 1208 |
+
```python
|
| 1209 |
+
>>> from transformers import AutoTokenizer, E5RopeForCausalLM, E5RopeConfig
|
| 1210 |
+
>>> import torch
|
| 1211 |
+
|
| 1212 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/e5rope_chinese_base")
|
| 1213 |
+
>>> config = E5RopeConfig.from_pretrained("junnyu/e5rope_chinese_base")
|
| 1214 |
+
>>> config.is_decoder = True
|
| 1215 |
+
>>> model = E5RopeForCausalLM.from_pretrained("junnyu/e5rope_chinese_base", config=config)
|
| 1216 |
+
|
| 1217 |
+
>>> inputs = tokenizer("今天天气非常好。", return_tensors="pt")
|
| 1218 |
+
>>> outputs = model(**inputs)
|
| 1219 |
+
|
| 1220 |
+
>>> prediction_logits = outputs.logits
|
| 1221 |
+
```"""
|
| 1222 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1223 |
+
|
| 1224 |
+
outputs = self.e5rope(
|
| 1225 |
+
input_ids,
|
| 1226 |
+
attention_mask=attention_mask,
|
| 1227 |
+
token_type_ids=token_type_ids,
|
| 1228 |
+
head_mask=head_mask,
|
| 1229 |
+
inputs_embeds=inputs_embeds,
|
| 1230 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1231 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1232 |
+
past_key_values=past_key_values,
|
| 1233 |
+
use_cache=use_cache,
|
| 1234 |
+
output_attentions=output_attentions,
|
| 1235 |
+
output_hidden_states=output_hidden_states,
|
| 1236 |
+
return_dict=return_dict,
|
| 1237 |
+
)
|
| 1238 |
+
|
| 1239 |
+
sequence_output = outputs[0]
|
| 1240 |
+
prediction_scores = self.cls(sequence_output)
|
| 1241 |
+
|
| 1242 |
+
lm_loss = None
|
| 1243 |
+
if labels is not None:
|
| 1244 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 1245 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
| 1246 |
+
labels = labels[:, 1:].contiguous()
|
| 1247 |
+
loss_fct = CrossEntropyLoss()
|
| 1248 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1249 |
+
|
| 1250 |
+
if not return_dict:
|
| 1251 |
+
output = (prediction_scores,) + outputs[1:]
|
| 1252 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 1253 |
+
|
| 1254 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1255 |
+
loss=lm_loss,
|
| 1256 |
+
logits=prediction_scores,
|
| 1257 |
+
past_key_values=outputs.past_key_values,
|
| 1258 |
+
hidden_states=outputs.hidden_states,
|
| 1259 |
+
attentions=outputs.attentions,
|
| 1260 |
+
cross_attentions=outputs.cross_attentions,
|
| 1261 |
+
)
|
| 1262 |
+
|
| 1263 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
| 1264 |
+
input_shape = input_ids.shape
|
| 1265 |
+
|
| 1266 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
| 1267 |
+
if attention_mask is None:
|
| 1268 |
+
attention_mask = input_ids.new_ones(input_shape)
|
| 1269 |
+
|
| 1270 |
+
# cut decoder_input_ids if past is used
|
| 1271 |
+
if past_key_values is not None:
|
| 1272 |
+
input_ids = input_ids[:, -1:]
|
| 1273 |
+
|
| 1274 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
| 1275 |
+
|
| 1276 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 1277 |
+
reordered_past = ()
|
| 1278 |
+
for layer_past in past_key_values:
|
| 1279 |
+
reordered_past += (
|
| 1280 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
| 1281 |
+
+ layer_past[2:],
|
| 1282 |
+
)
|
| 1283 |
+
return reordered_past
|
| 1284 |
+
|
| 1285 |
+
|
| 1286 |
+
class E5RopeClassificationHead(nn.Module):
|
| 1287 |
+
"""Head for sentence-level classification tasks."""
|
| 1288 |
+
|
| 1289 |
+
def __init__(self, config):
|
| 1290 |
+
super().__init__()
|
| 1291 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1292 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1293 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 1294 |
+
|
| 1295 |
+
self.config = config
|
| 1296 |
+
|
| 1297 |
+
def forward(self, features, **kwargs):
|
| 1298 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 1299 |
+
x = self.dropout(x)
|
| 1300 |
+
x = self.dense(x)
|
| 1301 |
+
x = ACT2FN[self.config.hidden_act](x)
|
| 1302 |
+
x = self.dropout(x)
|
| 1303 |
+
x = self.out_proj(x)
|
| 1304 |
+
return x
|
| 1305 |
+
|
| 1306 |
+
|