Please enter the commit message for your changes. Lines starting
Browse fileswith '' will be ignored, and an empty message aborts the commit.
Committer: Ubuntu <azureuser@myVm.pweh1myzxgie3nlmnfmiv00d1d.bx.internal.cloudapp.net>
On branch main
Your branch is up to date with 'origin/main'.
Changes to be committed:
deleted: README1.md
deleted: checkpoint-279/README.md
deleted: checkpoint-279/adapter_config.json
deleted: checkpoint-279/adapter_model.safetensors
deleted: checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
deleted: checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
deleted: checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
deleted: checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
deleted: checkpoint-279/global_step279/mp_rank_00_model_states.pt
deleted: checkpoint-279/latest
deleted: checkpoint-279/rng_state_0.pth
deleted: checkpoint-279/rng_state_1.pth
deleted: checkpoint-279/rng_state_2.pth
deleted: checkpoint-279/rng_state_3.pth
deleted: checkpoint-279/scheduler.pt
deleted: checkpoint-279/trainer_state.json
deleted: checkpoint-279/training_args.bin
deleted: checkpoint-279/zero_to_fp32.py
deleted: checkpoint-336/README.md
deleted: checkpoint-336/adapter_config.json
deleted: checkpoint-336/adapter_model.safetensors
deleted: checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
deleted: checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
deleted: checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
deleted: checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
deleted: checkpoint-336/global_step336/mp_rank_00_model_states.pt
deleted: checkpoint-336/latest
deleted: checkpoint-336/rng_state_0.pth
deleted: checkpoint-336/rng_state_1.pth
deleted: checkpoint-336/rng_state_2.pth
deleted: checkpoint-336/rng_state_3.pth
deleted: checkpoint-336/scheduler.pt
deleted: checkpoint-336/trainer_state.json
deleted: checkpoint-336/training_args.bin
deleted: checkpoint-336/zero_to_fp32.py
deleted: checkpoint-372/README.md
deleted: checkpoint-372/adapter_config.json
deleted: checkpoint-372/adapter_model.safetensors
deleted: checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
deleted: checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
deleted: checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
deleted: checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
deleted: checkpoint-372/global_step372/mp_rank_00_model_states.pt
deleted: checkpoint-372/latest
deleted: checkpoint-372/rng_state_0.pth
deleted: checkpoint-372/rng_state_1.pth
deleted: checkpoint-372/rng_state_2.pth
deleted: checkpoint-372/rng_state_3.pth
deleted: checkpoint-372/scheduler.pt
deleted: checkpoint-372/trainer_state.json
deleted: checkpoint-372/training_args.bin
deleted: checkpoint-372/zero_to_fp32.py
deleted: checkpoint-448/README.md
deleted: checkpoint-448/adapter_config.json
deleted: checkpoint-448/adapter_model.safetensors
deleted: checkpoint-448/global_step448/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
deleted: checkpoint-448/global_step448/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
deleted: checkpoint-448/global_step448/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
deleted: checkpoint-448/global_step448/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
deleted: checkpoint-448/global_step448/mp_rank_00_model_states.pt
deleted: checkpoint-448/latest
deleted: checkpoint-448/rng_state_0.pth
deleted: checkpoint-448/rng_state_1.pth
deleted: checkpoint-448/rng_state_2.pth
deleted: checkpoint-448/rng_state_3.pth
deleted: checkpoint-448/scheduler.pt
deleted: checkpoint-448/trainer_state.json
deleted: checkpoint-448/training_args.bin
deleted: checkpoint-448/zero_to_fp32.py
deleted: merged/config.json
deleted: merged/generation_config.json
deleted: merged/pytorch_model-00001-of-00002.bin
deleted: merged/pytorch_model-00002-of-00002.bin
deleted: merged/pytorch_model.bin.index.json
deleted: merged/special_tokens_map.json
deleted: merged/tokenizer.json
deleted: merged/tokenizer.model
deleted: merged/tokenizer_config.json
deleted: runs/Mar21_07-07-55_8205afe3ecd2/events.out.tfevents.1711004877.8205afe3ecd2.2618.0
- README1.md +0 -153
- checkpoint-279/README.md +0 -202
- checkpoint-279/adapter_config.json +0 -33
- checkpoint-279/adapter_model.safetensors +0 -3
- checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
- checkpoint-279/global_step279/mp_rank_00_model_states.pt +0 -3
- checkpoint-279/latest +0 -1
- checkpoint-279/rng_state_0.pth +0 -3
- checkpoint-279/rng_state_1.pth +0 -3
- checkpoint-279/rng_state_2.pth +0 -3
- checkpoint-279/rng_state_3.pth +0 -3
- checkpoint-279/scheduler.pt +0 -3
- checkpoint-279/trainer_state.json +0 -2070
- checkpoint-279/training_args.bin +0 -3
- checkpoint-279/zero_to_fp32.py +0 -592
- checkpoint-336/README.md +0 -202
- checkpoint-336/adapter_config.json +0 -33
- checkpoint-336/adapter_model.safetensors +0 -3
- checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
- checkpoint-336/global_step336/mp_rank_00_model_states.pt +0 -3
- checkpoint-336/latest +0 -1
- checkpoint-336/rng_state_0.pth +0 -3
- checkpoint-336/rng_state_1.pth +0 -3
- checkpoint-336/rng_state_2.pth +0 -3
- checkpoint-336/rng_state_3.pth +0 -3
- checkpoint-336/scheduler.pt +0 -3
- checkpoint-336/trainer_state.json +0 -2477
- checkpoint-336/training_args.bin +0 -3
- checkpoint-336/zero_to_fp32.py +0 -592
- checkpoint-372/README.md +0 -202
- checkpoint-372/adapter_config.json +0 -33
- checkpoint-372/adapter_model.safetensors +0 -3
- checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
- checkpoint-372/global_step372/mp_rank_00_model_states.pt +0 -3
- checkpoint-372/latest +0 -1
- checkpoint-372/rng_state_0.pth +0 -3
- checkpoint-372/rng_state_1.pth +0 -3
- checkpoint-372/rng_state_2.pth +0 -3
- checkpoint-372/rng_state_3.pth +0 -3
- checkpoint-372/scheduler.pt +0 -3
- checkpoint-372/trainer_state.json +0 -2753
|
@@ -1,153 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
library_name: peft
|
| 4 |
-
tags:
|
| 5 |
-
- generated_from_trainer
|
| 6 |
-
base_model: google/gemma-7b-it
|
| 7 |
-
model-index:
|
| 8 |
-
- name: out
|
| 9 |
-
results: []
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 14 |
-
<details><summary>See axolotl config</summary>
|
| 15 |
-
|
| 16 |
-
axolotl version: `0.4.0`
|
| 17 |
-
```yaml
|
| 18 |
-
# use google/gemma-7b if you have access
|
| 19 |
-
base_model: google/gemma-7b-it
|
| 20 |
-
model_type: AutoModelForCausalLM
|
| 21 |
-
tokenizer_type: AutoTokenizer
|
| 22 |
-
|
| 23 |
-
load_in_8bit: false
|
| 24 |
-
load_in_4bit: true
|
| 25 |
-
strict: false
|
| 26 |
-
|
| 27 |
-
# huggingface repo
|
| 28 |
-
datasets:
|
| 29 |
-
- path: ./python-oasst/chunk_1.jsonl
|
| 30 |
-
type: oasst
|
| 31 |
-
val_set_size: 0.1
|
| 32 |
-
output_dir: ./out
|
| 33 |
-
|
| 34 |
-
adapter: qlora
|
| 35 |
-
lora_r: 32
|
| 36 |
-
lora_alpha: 16
|
| 37 |
-
lora_dropout: 0.05
|
| 38 |
-
lora_target_linear: true
|
| 39 |
-
|
| 40 |
-
sequence_len: 4096
|
| 41 |
-
sample_packing: false
|
| 42 |
-
pad_to_sequence_len: true
|
| 43 |
-
|
| 44 |
-
wandb_project: gemma-7b-it
|
| 45 |
-
wandb_entity:
|
| 46 |
-
wandb_watch:
|
| 47 |
-
wandb_name:
|
| 48 |
-
wandb_log_model:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
gradient_accumulation_steps: 6
|
| 52 |
-
micro_batch_size: 4
|
| 53 |
-
num_epochs: 4
|
| 54 |
-
optimizer: adamw_bnb_8bit
|
| 55 |
-
lr_scheduler: cosine
|
| 56 |
-
learning_rate: 0.0002
|
| 57 |
-
|
| 58 |
-
train_on_inputs: true
|
| 59 |
-
group_by_length: false
|
| 60 |
-
bf16: auto
|
| 61 |
-
fp16:
|
| 62 |
-
tf32: false
|
| 63 |
-
|
| 64 |
-
gradient_checkpointing: true
|
| 65 |
-
early_stopping_patience:
|
| 66 |
-
resume_from_checkpoint:
|
| 67 |
-
local_rank:
|
| 68 |
-
logging_steps: 1
|
| 69 |
-
xformers_attention:
|
| 70 |
-
flash_attention: true
|
| 71 |
-
|
| 72 |
-
warmup_ratio: 0.1
|
| 73 |
-
evals_per_epoch: 4
|
| 74 |
-
eval_table_size:
|
| 75 |
-
eval_max_new_tokens: 128
|
| 76 |
-
saves_per_epoch: 1
|
| 77 |
-
debug:
|
| 78 |
-
deepspeed: deepspeed_configs/zero1.json
|
| 79 |
-
weight_decay: 0.0
|
| 80 |
-
fsdp:
|
| 81 |
-
fsdp_config:
|
| 82 |
-
special_tokens:
|
| 83 |
-
|
| 84 |
-
```
|
| 85 |
-
|
| 86 |
-
</details><br>
|
| 87 |
-
|
| 88 |
-
# out
|
| 89 |
-
|
| 90 |
-
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
|
| 91 |
-
It achieves the following results on the evaluation set:
|
| 92 |
-
- Loss: 1.1911
|
| 93 |
-
|
| 94 |
-
## Model description
|
| 95 |
-
|
| 96 |
-
More information needed
|
| 97 |
-
|
| 98 |
-
## Intended uses & limitations
|
| 99 |
-
|
| 100 |
-
More information needed
|
| 101 |
-
|
| 102 |
-
## Training and evaluation data
|
| 103 |
-
|
| 104 |
-
More information needed
|
| 105 |
-
|
| 106 |
-
## Training procedure
|
| 107 |
-
|
| 108 |
-
### Training hyperparameters
|
| 109 |
-
|
| 110 |
-
The following hyperparameters were used during training:
|
| 111 |
-
- learning_rate: 0.0002
|
| 112 |
-
- train_batch_size: 4
|
| 113 |
-
- eval_batch_size: 4
|
| 114 |
-
- seed: 42
|
| 115 |
-
- distributed_type: multi-GPU
|
| 116 |
-
- num_devices: 4
|
| 117 |
-
- gradient_accumulation_steps: 6
|
| 118 |
-
- total_train_batch_size: 96
|
| 119 |
-
- total_eval_batch_size: 16
|
| 120 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 121 |
-
- lr_scheduler_type: cosine
|
| 122 |
-
- lr_scheduler_warmup_steps: 9
|
| 123 |
-
- num_epochs: 4
|
| 124 |
-
|
| 125 |
-
### Training results
|
| 126 |
-
|
| 127 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
| 128 |
-
|:-------------:|:-----:|:----:|:---------------:|
|
| 129 |
-
| 5.0474 | 0.01 | 1 | 5.9279 |
|
| 130 |
-
| 1.2191 | 0.26 | 24 | 1.2947 |
|
| 131 |
-
| 1.1165 | 0.51 | 48 | 1.1679 |
|
| 132 |
-
| 1.0711 | 0.77 | 72 | 1.1377 |
|
| 133 |
-
| 0.9546 | 1.02 | 96 | 1.1303 |
|
| 134 |
-
| 0.9309 | 1.28 | 120 | 1.1298 |
|
| 135 |
-
| 0.9588 | 1.54 | 144 | 1.1242 |
|
| 136 |
-
| 0.8553 | 1.79 | 168 | 1.1259 |
|
| 137 |
-
| 0.8231 | 2.05 | 192 | 1.1449 |
|
| 138 |
-
| 0.8154 | 2.31 | 216 | 1.1514 |
|
| 139 |
-
| 0.7354 | 2.56 | 240 | 1.1471 |
|
| 140 |
-
| 0.7577 | 2.82 | 264 | 1.1479 |
|
| 141 |
-
| 0.6647 | 3.07 | 288 | 1.1923 |
|
| 142 |
-
| 0.6928 | 3.33 | 312 | 1.1856 |
|
| 143 |
-
| 0.731 | 3.59 | 336 | 1.1890 |
|
| 144 |
-
| 0.7193 | 3.84 | 360 | 1.1911 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
### Framework versions
|
| 148 |
-
|
| 149 |
-
- PEFT 0.9.0
|
| 150 |
-
- Transformers 4.39.0.dev0
|
| 151 |
-
- Pytorch 2.1.2+cu118
|
| 152 |
-
- Datasets 2.18.0
|
| 153 |
-
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,202 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: peft
|
| 3 |
-
base_model: google/gemma-7b-it
|
| 4 |
-
---
|
| 5 |
-
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"alpha_pattern": {},
|
| 3 |
-
"auto_mapping": null,
|
| 4 |
-
"base_model_name_or_path": "google/gemma-7b-it",
|
| 5 |
-
"bias": "none",
|
| 6 |
-
"fan_in_fan_out": null,
|
| 7 |
-
"inference_mode": true,
|
| 8 |
-
"init_lora_weights": true,
|
| 9 |
-
"layers_pattern": null,
|
| 10 |
-
"layers_to_transform": null,
|
| 11 |
-
"loftq_config": {},
|
| 12 |
-
"lora_alpha": 16,
|
| 13 |
-
"lora_dropout": 0.05,
|
| 14 |
-
"megatron_config": null,
|
| 15 |
-
"megatron_core": "megatron.core",
|
| 16 |
-
"modules_to_save": null,
|
| 17 |
-
"peft_type": "LORA",
|
| 18 |
-
"r": 32,
|
| 19 |
-
"rank_pattern": {},
|
| 20 |
-
"revision": null,
|
| 21 |
-
"target_modules": [
|
| 22 |
-
"down_proj",
|
| 23 |
-
"o_proj",
|
| 24 |
-
"k_proj",
|
| 25 |
-
"q_proj",
|
| 26 |
-
"gate_proj",
|
| 27 |
-
"up_proj",
|
| 28 |
-
"v_proj"
|
| 29 |
-
],
|
| 30 |
-
"task_type": "CAUSAL_LM",
|
| 31 |
-
"use_dora": false,
|
| 32 |
-
"use_rslora": false
|
| 33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0831f70d185dae9ca69f58be3eab596067ac52e75e3e97b46d23ecd486b83942
|
| 3 |
-
size 200068904
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:90f2db91b1ca035dfa781beb0567b7cfaaf6646de04cc9a82d8e80069e7a5b09
|
| 3 |
-
size 150126608
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b9ec41ba7f5c3131e00c854ec2bbfca98e6a3321e5f2ddf6efdc6056fa008c5a
|
| 3 |
-
size 150126672
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:41f227ca1d3c19b4cd53567e28a2d395c2e804bd38dfd9bb3c937adab1daf5a3
|
| 3 |
-
size 150126736
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7e486ddf3459c4f6befb004a9374e7e4fb9bd64bba72dd2e6f7051ee89939988
|
| 3 |
-
size 150126736
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:feed7b7a8694c54651374fb581d67d60790a016e23023446231557add62ffc80
|
| 3 |
-
size 1896781286
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step279
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a84c3f9fa55e23a5c4d93b108c705b57ba9a5ed816191e6dfbb6e72ad2857e6d
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fbb1da31ff41578c72556d0a8b9b94abf6be26bf16b6456ecd87d2b611f5b9bd
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:11a7b38529914886a43976df69af7f331315329e1d38788c57003ca4cd1a849f
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7d65b4248464f467db8226c5cc4ba4aa32e06af0bf915b61ea8a2db71d16b5ce
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:099f524a0aa9353b01bf7d70e5a899c6e8ee8efc46e982213631888df6e5111b
|
| 3 |
-
size 1064
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,2070 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"best_metric": null,
|
| 3 |
-
"best_model_checkpoint": null,
|
| 4 |
-
"epoch": 2.97864768683274,
|
| 5 |
-
"eval_steps": 24,
|
| 6 |
-
"global_step": 279,
|
| 7 |
-
"is_hyper_param_search": false,
|
| 8 |
-
"is_local_process_zero": true,
|
| 9 |
-
"is_world_process_zero": true,
|
| 10 |
-
"log_history": [
|
| 11 |
-
{
|
| 12 |
-
"epoch": 0.01,
|
| 13 |
-
"grad_norm": 1.8206765789002874,
|
| 14 |
-
"learning_rate": 2.2222222222222223e-05,
|
| 15 |
-
"loss": 5.0474,
|
| 16 |
-
"step": 1
|
| 17 |
-
},
|
| 18 |
-
{
|
| 19 |
-
"epoch": 0.01,
|
| 20 |
-
"eval_loss": 5.927858829498291,
|
| 21 |
-
"eval_runtime": 117.3665,
|
| 22 |
-
"eval_samples_per_second": 8.512,
|
| 23 |
-
"eval_steps_per_second": 0.537,
|
| 24 |
-
"step": 1
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"epoch": 0.02,
|
| 28 |
-
"grad_norm": 1.9889295079554647,
|
| 29 |
-
"learning_rate": 4.4444444444444447e-05,
|
| 30 |
-
"loss": 5.5569,
|
| 31 |
-
"step": 2
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"epoch": 0.03,
|
| 35 |
-
"grad_norm": 1.8931443004310682,
|
| 36 |
-
"learning_rate": 6.666666666666667e-05,
|
| 37 |
-
"loss": 5.2383,
|
| 38 |
-
"step": 3
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"epoch": 0.04,
|
| 42 |
-
"grad_norm": 2.195266234429632,
|
| 43 |
-
"learning_rate": 8.888888888888889e-05,
|
| 44 |
-
"loss": 5.4943,
|
| 45 |
-
"step": 4
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"epoch": 0.05,
|
| 49 |
-
"grad_norm": 2.6001064132041503,
|
| 50 |
-
"learning_rate": 0.00011111111111111112,
|
| 51 |
-
"loss": 5.2602,
|
| 52 |
-
"step": 5
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"epoch": 0.06,
|
| 56 |
-
"grad_norm": 3.26301463076567,
|
| 57 |
-
"learning_rate": 0.00013333333333333334,
|
| 58 |
-
"loss": 4.8182,
|
| 59 |
-
"step": 6
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"epoch": 0.07,
|
| 63 |
-
"grad_norm": 3.476044691292363,
|
| 64 |
-
"learning_rate": 0.00015555555555555556,
|
| 65 |
-
"loss": 4.0432,
|
| 66 |
-
"step": 7
|
| 67 |
-
},
|
| 68 |
-
{
|
| 69 |
-
"epoch": 0.09,
|
| 70 |
-
"grad_norm": 3.378803229553045,
|
| 71 |
-
"learning_rate": 0.00017777777777777779,
|
| 72 |
-
"loss": 3.5212,
|
| 73 |
-
"step": 8
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"epoch": 0.1,
|
| 77 |
-
"grad_norm": 3.9419449437137017,
|
| 78 |
-
"learning_rate": 0.0002,
|
| 79 |
-
"loss": 3.2239,
|
| 80 |
-
"step": 9
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"epoch": 0.11,
|
| 84 |
-
"grad_norm": 5.8833082175146485,
|
| 85 |
-
"learning_rate": 0.00019999625498303932,
|
| 86 |
-
"loss": 3.4319,
|
| 87 |
-
"step": 10
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"epoch": 0.12,
|
| 91 |
-
"grad_norm": 5.4690223843996515,
|
| 92 |
-
"learning_rate": 0.0001999850202126604,
|
| 93 |
-
"loss": 2.8167,
|
| 94 |
-
"step": 11
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"epoch": 0.13,
|
| 98 |
-
"grad_norm": 7.009614336449043,
|
| 99 |
-
"learning_rate": 0.00019996629653035126,
|
| 100 |
-
"loss": 2.7966,
|
| 101 |
-
"step": 12
|
| 102 |
-
},
|
| 103 |
-
{
|
| 104 |
-
"epoch": 0.14,
|
| 105 |
-
"grad_norm": 6.254841874500106,
|
| 106 |
-
"learning_rate": 0.0001999400853385221,
|
| 107 |
-
"loss": 2.1336,
|
| 108 |
-
"step": 13
|
| 109 |
-
},
|
| 110 |
-
{
|
| 111 |
-
"epoch": 0.15,
|
| 112 |
-
"grad_norm": 6.037710889841169,
|
| 113 |
-
"learning_rate": 0.00019990638860040006,
|
| 114 |
-
"loss": 1.85,
|
| 115 |
-
"step": 14
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"epoch": 0.16,
|
| 119 |
-
"grad_norm": 1.0500019118881985,
|
| 120 |
-
"learning_rate": 0.00019986520883988232,
|
| 121 |
-
"loss": 1.5964,
|
| 122 |
-
"step": 15
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"epoch": 0.17,
|
| 126 |
-
"grad_norm": 0.6169710624824223,
|
| 127 |
-
"learning_rate": 0.00019981654914134686,
|
| 128 |
-
"loss": 1.4307,
|
| 129 |
-
"step": 16
|
| 130 |
-
},
|
| 131 |
-
{
|
| 132 |
-
"epoch": 0.18,
|
| 133 |
-
"grad_norm": 1.86114059095932,
|
| 134 |
-
"learning_rate": 0.00019976041314942155,
|
| 135 |
-
"loss": 1.4285,
|
| 136 |
-
"step": 17
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"epoch": 0.19,
|
| 140 |
-
"grad_norm": 1.6513877610200167,
|
| 141 |
-
"learning_rate": 0.00019969680506871137,
|
| 142 |
-
"loss": 1.4621,
|
| 143 |
-
"step": 18
|
| 144 |
-
},
|
| 145 |
-
{
|
| 146 |
-
"epoch": 0.2,
|
| 147 |
-
"grad_norm": 1.4395882738454628,
|
| 148 |
-
"learning_rate": 0.000199625729663483,
|
| 149 |
-
"loss": 1.3561,
|
| 150 |
-
"step": 19
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"epoch": 0.21,
|
| 154 |
-
"grad_norm": 0.70847060238536,
|
| 155 |
-
"learning_rate": 0.00019954719225730847,
|
| 156 |
-
"loss": 1.3565,
|
| 157 |
-
"step": 20
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"epoch": 0.22,
|
| 161 |
-
"grad_norm": 0.4331630595385925,
|
| 162 |
-
"learning_rate": 0.00019946119873266613,
|
| 163 |
-
"loss": 1.3374,
|
| 164 |
-
"step": 21
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"epoch": 0.23,
|
| 168 |
-
"grad_norm": 0.5580281682185451,
|
| 169 |
-
"learning_rate": 0.0001993677555305002,
|
| 170 |
-
"loss": 1.313,
|
| 171 |
-
"step": 22
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"epoch": 0.25,
|
| 175 |
-
"grad_norm": 0.5217443953771937,
|
| 176 |
-
"learning_rate": 0.00019926686964973813,
|
| 177 |
-
"loss": 1.2541,
|
| 178 |
-
"step": 23
|
| 179 |
-
},
|
| 180 |
-
{
|
| 181 |
-
"epoch": 0.26,
|
| 182 |
-
"grad_norm": 0.36823120314463453,
|
| 183 |
-
"learning_rate": 0.00019915854864676664,
|
| 184 |
-
"loss": 1.2191,
|
| 185 |
-
"step": 24
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"epoch": 0.26,
|
| 189 |
-
"eval_loss": 1.2946609258651733,
|
| 190 |
-
"eval_runtime": 118.9039,
|
| 191 |
-
"eval_samples_per_second": 8.402,
|
| 192 |
-
"eval_steps_per_second": 0.53,
|
| 193 |
-
"step": 24
|
| 194 |
-
},
|
| 195 |
-
{
|
| 196 |
-
"epoch": 0.27,
|
| 197 |
-
"grad_norm": 0.5797477063688413,
|
| 198 |
-
"learning_rate": 0.0001990428006348656,
|
| 199 |
-
"loss": 1.24,
|
| 200 |
-
"step": 25
|
| 201 |
-
},
|
| 202 |
-
{
|
| 203 |
-
"epoch": 0.28,
|
| 204 |
-
"grad_norm": 0.41369538857234545,
|
| 205 |
-
"learning_rate": 0.00019891963428360043,
|
| 206 |
-
"loss": 1.209,
|
| 207 |
-
"step": 26
|
| 208 |
-
},
|
| 209 |
-
{
|
| 210 |
-
"epoch": 0.29,
|
| 211 |
-
"grad_norm": 0.36666008426797836,
|
| 212 |
-
"learning_rate": 0.00019878905881817252,
|
| 213 |
-
"loss": 1.2543,
|
| 214 |
-
"step": 27
|
| 215 |
-
},
|
| 216 |
-
{
|
| 217 |
-
"epoch": 0.3,
|
| 218 |
-
"grad_norm": 0.3976779691989045,
|
| 219 |
-
"learning_rate": 0.00019865108401872857,
|
| 220 |
-
"loss": 1.2431,
|
| 221 |
-
"step": 28
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"epoch": 0.31,
|
| 225 |
-
"grad_norm": 0.4992861718630414,
|
| 226 |
-
"learning_rate": 0.00019850572021962788,
|
| 227 |
-
"loss": 1.2471,
|
| 228 |
-
"step": 29
|
| 229 |
-
},
|
| 230 |
-
{
|
| 231 |
-
"epoch": 0.32,
|
| 232 |
-
"grad_norm": 0.33729072192890136,
|
| 233 |
-
"learning_rate": 0.00019835297830866826,
|
| 234 |
-
"loss": 1.1933,
|
| 235 |
-
"step": 30
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"epoch": 0.33,
|
| 239 |
-
"grad_norm": 0.29373457949318904,
|
| 240 |
-
"learning_rate": 0.00019819286972627066,
|
| 241 |
-
"loss": 1.1761,
|
| 242 |
-
"step": 31
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"epoch": 0.34,
|
| 246 |
-
"grad_norm": 0.5339184947140588,
|
| 247 |
-
"learning_rate": 0.0001980254064646223,
|
| 248 |
-
"loss": 1.165,
|
| 249 |
-
"step": 32
|
| 250 |
-
},
|
| 251 |
-
{
|
| 252 |
-
"epoch": 0.35,
|
| 253 |
-
"grad_norm": 0.38755069216510263,
|
| 254 |
-
"learning_rate": 0.00019785060106677818,
|
| 255 |
-
"loss": 1.1236,
|
| 256 |
-
"step": 33
|
| 257 |
-
},
|
| 258 |
-
{
|
| 259 |
-
"epoch": 0.36,
|
| 260 |
-
"grad_norm": 0.338373181403367,
|
| 261 |
-
"learning_rate": 0.00019766846662572191,
|
| 262 |
-
"loss": 1.2102,
|
| 263 |
-
"step": 34
|
| 264 |
-
},
|
| 265 |
-
{
|
| 266 |
-
"epoch": 0.37,
|
| 267 |
-
"grad_norm": 0.39237714718744304,
|
| 268 |
-
"learning_rate": 0.00019747901678338496,
|
| 269 |
-
"loss": 1.1642,
|
| 270 |
-
"step": 35
|
| 271 |
-
},
|
| 272 |
-
{
|
| 273 |
-
"epoch": 0.38,
|
| 274 |
-
"grad_norm": 0.3614249847081747,
|
| 275 |
-
"learning_rate": 0.00019728226572962473,
|
| 276 |
-
"loss": 1.1387,
|
| 277 |
-
"step": 36
|
| 278 |
-
},
|
| 279 |
-
{
|
| 280 |
-
"epoch": 0.4,
|
| 281 |
-
"grad_norm": 0.28278007479509987,
|
| 282 |
-
"learning_rate": 0.00019707822820116193,
|
| 283 |
-
"loss": 1.0939,
|
| 284 |
-
"step": 37
|
| 285 |
-
},
|
| 286 |
-
{
|
| 287 |
-
"epoch": 0.41,
|
| 288 |
-
"grad_norm": 0.3008254873268798,
|
| 289 |
-
"learning_rate": 0.00019686691948047664,
|
| 290 |
-
"loss": 1.1346,
|
| 291 |
-
"step": 38
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"epoch": 0.42,
|
| 295 |
-
"grad_norm": 0.4263010439416343,
|
| 296 |
-
"learning_rate": 0.0001966483553946637,
|
| 297 |
-
"loss": 1.1015,
|
| 298 |
-
"step": 39
|
| 299 |
-
},
|
| 300 |
-
{
|
| 301 |
-
"epoch": 0.43,
|
| 302 |
-
"grad_norm": 0.32725448028464205,
|
| 303 |
-
"learning_rate": 0.00019642255231424729,
|
| 304 |
-
"loss": 1.1324,
|
| 305 |
-
"step": 40
|
| 306 |
-
},
|
| 307 |
-
{
|
| 308 |
-
"epoch": 0.44,
|
| 309 |
-
"grad_norm": 0.3028242900588441,
|
| 310 |
-
"learning_rate": 0.00019618952715195475,
|
| 311 |
-
"loss": 1.1147,
|
| 312 |
-
"step": 41
|
| 313 |
-
},
|
| 314 |
-
{
|
| 315 |
-
"epoch": 0.45,
|
| 316 |
-
"grad_norm": 0.33893311928252234,
|
| 317 |
-
"learning_rate": 0.00019594929736144976,
|
| 318 |
-
"loss": 1.0978,
|
| 319 |
-
"step": 42
|
| 320 |
-
},
|
| 321 |
-
{
|
| 322 |
-
"epoch": 0.46,
|
| 323 |
-
"grad_norm": 0.2786082334492372,
|
| 324 |
-
"learning_rate": 0.0001957018809360251,
|
| 325 |
-
"loss": 1.0933,
|
| 326 |
-
"step": 43
|
| 327 |
-
},
|
| 328 |
-
{
|
| 329 |
-
"epoch": 0.47,
|
| 330 |
-
"grad_norm": 0.2732185168098956,
|
| 331 |
-
"learning_rate": 0.00019544729640725498,
|
| 332 |
-
"loss": 1.084,
|
| 333 |
-
"step": 44
|
| 334 |
-
},
|
| 335 |
-
{
|
| 336 |
-
"epoch": 0.48,
|
| 337 |
-
"grad_norm": 0.33386436894143035,
|
| 338 |
-
"learning_rate": 0.00019518556284360696,
|
| 339 |
-
"loss": 1.0673,
|
| 340 |
-
"step": 45
|
| 341 |
-
},
|
| 342 |
-
{
|
| 343 |
-
"epoch": 0.49,
|
| 344 |
-
"grad_norm": 0.2761688734050621,
|
| 345 |
-
"learning_rate": 0.00019491669984901379,
|
| 346 |
-
"loss": 1.0523,
|
| 347 |
-
"step": 46
|
| 348 |
-
},
|
| 349 |
-
{
|
| 350 |
-
"epoch": 0.5,
|
| 351 |
-
"grad_norm": 0.3346957388610895,
|
| 352 |
-
"learning_rate": 0.00019464072756140486,
|
| 353 |
-
"loss": 1.0913,
|
| 354 |
-
"step": 47
|
| 355 |
-
},
|
| 356 |
-
{
|
| 357 |
-
"epoch": 0.51,
|
| 358 |
-
"grad_norm": 0.30196058996924285,
|
| 359 |
-
"learning_rate": 0.0001943576666511982,
|
| 360 |
-
"loss": 1.1165,
|
| 361 |
-
"step": 48
|
| 362 |
-
},
|
| 363 |
-
{
|
| 364 |
-
"epoch": 0.51,
|
| 365 |
-
"eval_loss": 1.167867660522461,
|
| 366 |
-
"eval_runtime": 119.1485,
|
| 367 |
-
"eval_samples_per_second": 8.384,
|
| 368 |
-
"eval_steps_per_second": 0.529,
|
| 369 |
-
"step": 48
|
| 370 |
-
},
|
| 371 |
-
{
|
| 372 |
-
"epoch": 0.52,
|
| 373 |
-
"grad_norm": 0.27445390350987153,
|
| 374 |
-
"learning_rate": 0.00019406753831975203,
|
| 375 |
-
"loss": 1.1069,
|
| 376 |
-
"step": 49
|
| 377 |
-
},
|
| 378 |
-
{
|
| 379 |
-
"epoch": 0.53,
|
| 380 |
-
"grad_norm": 0.34729097228771255,
|
| 381 |
-
"learning_rate": 0.00019377036429777672,
|
| 382 |
-
"loss": 1.0567,
|
| 383 |
-
"step": 50
|
| 384 |
-
},
|
| 385 |
-
{
|
| 386 |
-
"epoch": 0.54,
|
| 387 |
-
"grad_norm": 0.31314016575739406,
|
| 388 |
-
"learning_rate": 0.0001934661668437073,
|
| 389 |
-
"loss": 1.0875,
|
| 390 |
-
"step": 51
|
| 391 |
-
},
|
| 392 |
-
{
|
| 393 |
-
"epoch": 0.56,
|
| 394 |
-
"grad_norm": 0.29140014335226905,
|
| 395 |
-
"learning_rate": 0.0001931549687420364,
|
| 396 |
-
"loss": 1.0929,
|
| 397 |
-
"step": 52
|
| 398 |
-
},
|
| 399 |
-
{
|
| 400 |
-
"epoch": 0.57,
|
| 401 |
-
"grad_norm": 0.2638104110161505,
|
| 402 |
-
"learning_rate": 0.00019283679330160726,
|
| 403 |
-
"loss": 1.0963,
|
| 404 |
-
"step": 53
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"epoch": 0.58,
|
| 408 |
-
"grad_norm": 0.2833945318119855,
|
| 409 |
-
"learning_rate": 0.0001925116643538684,
|
| 410 |
-
"loss": 1.0535,
|
| 411 |
-
"step": 54
|
| 412 |
-
},
|
| 413 |
-
{
|
| 414 |
-
"epoch": 0.59,
|
| 415 |
-
"grad_norm": 0.28672689795285417,
|
| 416 |
-
"learning_rate": 0.0001921796062510882,
|
| 417 |
-
"loss": 1.0699,
|
| 418 |
-
"step": 55
|
| 419 |
-
},
|
| 420 |
-
{
|
| 421 |
-
"epoch": 0.6,
|
| 422 |
-
"grad_norm": 0.261255409262294,
|
| 423 |
-
"learning_rate": 0.00019184064386453128,
|
| 424 |
-
"loss": 1.0658,
|
| 425 |
-
"step": 56
|
| 426 |
-
},
|
| 427 |
-
{
|
| 428 |
-
"epoch": 0.61,
|
| 429 |
-
"grad_norm": 0.24304864434604007,
|
| 430 |
-
"learning_rate": 0.00019149480258259533,
|
| 431 |
-
"loss": 1.0441,
|
| 432 |
-
"step": 57
|
| 433 |
-
},
|
| 434 |
-
{
|
| 435 |
-
"epoch": 0.62,
|
| 436 |
-
"grad_norm": 0.2987107937915846,
|
| 437 |
-
"learning_rate": 0.00019114210830890969,
|
| 438 |
-
"loss": 1.0061,
|
| 439 |
-
"step": 58
|
| 440 |
-
},
|
| 441 |
-
{
|
| 442 |
-
"epoch": 0.63,
|
| 443 |
-
"grad_norm": 0.2617045441373282,
|
| 444 |
-
"learning_rate": 0.00019078258746039507,
|
| 445 |
-
"loss": 1.0578,
|
| 446 |
-
"step": 59
|
| 447 |
-
},
|
| 448 |
-
{
|
| 449 |
-
"epoch": 0.64,
|
| 450 |
-
"grad_norm": 0.2577955355987167,
|
| 451 |
-
"learning_rate": 0.00019041626696528503,
|
| 452 |
-
"loss": 1.0333,
|
| 453 |
-
"step": 60
|
| 454 |
-
},
|
| 455 |
-
{
|
| 456 |
-
"epoch": 0.65,
|
| 457 |
-
"grad_norm": 0.2823058812174375,
|
| 458 |
-
"learning_rate": 0.0001900431742611089,
|
| 459 |
-
"loss": 1.0837,
|
| 460 |
-
"step": 61
|
| 461 |
-
},
|
| 462 |
-
{
|
| 463 |
-
"epoch": 0.66,
|
| 464 |
-
"grad_norm": 0.30425238718712166,
|
| 465 |
-
"learning_rate": 0.00018966333729263674,
|
| 466 |
-
"loss": 1.0619,
|
| 467 |
-
"step": 62
|
| 468 |
-
},
|
| 469 |
-
{
|
| 470 |
-
"epoch": 0.67,
|
| 471 |
-
"grad_norm": 0.29826831116146957,
|
| 472 |
-
"learning_rate": 0.0001892767845097864,
|
| 473 |
-
"loss": 1.056,
|
| 474 |
-
"step": 63
|
| 475 |
-
},
|
| 476 |
-
{
|
| 477 |
-
"epoch": 0.68,
|
| 478 |
-
"grad_norm": 0.22990267950533677,
|
| 479 |
-
"learning_rate": 0.00018888354486549237,
|
| 480 |
-
"loss": 1.061,
|
| 481 |
-
"step": 64
|
| 482 |
-
},
|
| 483 |
-
{
|
| 484 |
-
"epoch": 0.69,
|
| 485 |
-
"grad_norm": 0.27604852373975236,
|
| 486 |
-
"learning_rate": 0.00018848364781353744,
|
| 487 |
-
"loss": 1.0624,
|
| 488 |
-
"step": 65
|
| 489 |
-
},
|
| 490 |
-
{
|
| 491 |
-
"epoch": 0.7,
|
| 492 |
-
"grad_norm": 0.302101014156969,
|
| 493 |
-
"learning_rate": 0.00018807712330634642,
|
| 494 |
-
"loss": 1.0965,
|
| 495 |
-
"step": 66
|
| 496 |
-
},
|
| 497 |
-
{
|
| 498 |
-
"epoch": 0.72,
|
| 499 |
-
"grad_norm": 0.2532153192142023,
|
| 500 |
-
"learning_rate": 0.00018766400179274286,
|
| 501 |
-
"loss": 1.0972,
|
| 502 |
-
"step": 67
|
| 503 |
-
},
|
| 504 |
-
{
|
| 505 |
-
"epoch": 0.73,
|
| 506 |
-
"grad_norm": 0.23803088057755897,
|
| 507 |
-
"learning_rate": 0.00018724431421566823,
|
| 508 |
-
"loss": 1.0823,
|
| 509 |
-
"step": 68
|
| 510 |
-
},
|
| 511 |
-
{
|
| 512 |
-
"epoch": 0.74,
|
| 513 |
-
"grad_norm": 0.2200041903156331,
|
| 514 |
-
"learning_rate": 0.0001868180920098644,
|
| 515 |
-
"loss": 1.037,
|
| 516 |
-
"step": 69
|
| 517 |
-
},
|
| 518 |
-
{
|
| 519 |
-
"epoch": 0.75,
|
| 520 |
-
"grad_norm": 0.31123761066229655,
|
| 521 |
-
"learning_rate": 0.00018638536709951917,
|
| 522 |
-
"loss": 1.0689,
|
| 523 |
-
"step": 70
|
| 524 |
-
},
|
| 525 |
-
{
|
| 526 |
-
"epoch": 0.76,
|
| 527 |
-
"grad_norm": 0.2760757149384919,
|
| 528 |
-
"learning_rate": 0.00018594617189587512,
|
| 529 |
-
"loss": 1.0071,
|
| 530 |
-
"step": 71
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"epoch": 0.77,
|
| 534 |
-
"grad_norm": 0.2452672521810973,
|
| 535 |
-
"learning_rate": 0.00018550053929480202,
|
| 536 |
-
"loss": 1.0711,
|
| 537 |
-
"step": 72
|
| 538 |
-
},
|
| 539 |
-
{
|
| 540 |
-
"epoch": 0.77,
|
| 541 |
-
"eval_loss": 1.1377497911453247,
|
| 542 |
-
"eval_runtime": 119.461,
|
| 543 |
-
"eval_samples_per_second": 8.363,
|
| 544 |
-
"eval_steps_per_second": 0.527,
|
| 545 |
-
"step": 72
|
| 546 |
-
},
|
| 547 |
-
{
|
| 548 |
-
"epoch": 0.78,
|
| 549 |
-
"grad_norm": 0.30897216290479246,
|
| 550 |
-
"learning_rate": 0.0001850485026743328,
|
| 551 |
-
"loss": 1.0508,
|
| 552 |
-
"step": 73
|
| 553 |
-
},
|
| 554 |
-
{
|
| 555 |
-
"epoch": 0.79,
|
| 556 |
-
"grad_norm": 0.24165903393157925,
|
| 557 |
-
"learning_rate": 0.00018459009589216364,
|
| 558 |
-
"loss": 1.046,
|
| 559 |
-
"step": 74
|
| 560 |
-
},
|
| 561 |
-
{
|
| 562 |
-
"epoch": 0.8,
|
| 563 |
-
"grad_norm": 0.2509819208307879,
|
| 564 |
-
"learning_rate": 0.00018412535328311814,
|
| 565 |
-
"loss": 1.0726,
|
| 566 |
-
"step": 75
|
| 567 |
-
},
|
| 568 |
-
{
|
| 569 |
-
"epoch": 0.81,
|
| 570 |
-
"grad_norm": 0.26145395006758515,
|
| 571 |
-
"learning_rate": 0.00018365430965657526,
|
| 572 |
-
"loss": 0.9998,
|
| 573 |
-
"step": 76
|
| 574 |
-
},
|
| 575 |
-
{
|
| 576 |
-
"epoch": 0.82,
|
| 577 |
-
"grad_norm": 0.26920709605794424,
|
| 578 |
-
"learning_rate": 0.00018317700029386245,
|
| 579 |
-
"loss": 1.065,
|
| 580 |
-
"step": 77
|
| 581 |
-
},
|
| 582 |
-
{
|
| 583 |
-
"epoch": 0.83,
|
| 584 |
-
"grad_norm": 0.24226754926786417,
|
| 585 |
-
"learning_rate": 0.0001826934609456129,
|
| 586 |
-
"loss": 1.0489,
|
| 587 |
-
"step": 78
|
| 588 |
-
},
|
| 589 |
-
{
|
| 590 |
-
"epoch": 0.84,
|
| 591 |
-
"grad_norm": 0.3022365661006827,
|
| 592 |
-
"learning_rate": 0.00018220372782908777,
|
| 593 |
-
"loss": 1.0372,
|
| 594 |
-
"step": 79
|
| 595 |
-
},
|
| 596 |
-
{
|
| 597 |
-
"epoch": 0.85,
|
| 598 |
-
"grad_norm": 0.25795710005352673,
|
| 599 |
-
"learning_rate": 0.00018170783762546365,
|
| 600 |
-
"loss": 1.0128,
|
| 601 |
-
"step": 80
|
| 602 |
-
},
|
| 603 |
-
{
|
| 604 |
-
"epoch": 0.86,
|
| 605 |
-
"grad_norm": 0.3490748875058354,
|
| 606 |
-
"learning_rate": 0.00018120582747708502,
|
| 607 |
-
"loss": 1.0168,
|
| 608 |
-
"step": 81
|
| 609 |
-
},
|
| 610 |
-
{
|
| 611 |
-
"epoch": 0.88,
|
| 612 |
-
"grad_norm": 0.24938209735120945,
|
| 613 |
-
"learning_rate": 0.00018069773498468223,
|
| 614 |
-
"loss": 0.9586,
|
| 615 |
-
"step": 82
|
| 616 |
-
},
|
| 617 |
-
{
|
| 618 |
-
"epoch": 0.89,
|
| 619 |
-
"grad_norm": 0.2527612545099894,
|
| 620 |
-
"learning_rate": 0.00018018359820455536,
|
| 621 |
-
"loss": 1.0385,
|
| 622 |
-
"step": 83
|
| 623 |
-
},
|
| 624 |
-
{
|
| 625 |
-
"epoch": 0.9,
|
| 626 |
-
"grad_norm": 0.27528879975094916,
|
| 627 |
-
"learning_rate": 0.0001796634556457236,
|
| 628 |
-
"loss": 1.0328,
|
| 629 |
-
"step": 84
|
| 630 |
-
},
|
| 631 |
-
{
|
| 632 |
-
"epoch": 0.91,
|
| 633 |
-
"grad_norm": 0.2605002777661913,
|
| 634 |
-
"learning_rate": 0.0001791373462670411,
|
| 635 |
-
"loss": 0.9966,
|
| 636 |
-
"step": 85
|
| 637 |
-
},
|
| 638 |
-
{
|
| 639 |
-
"epoch": 0.92,
|
| 640 |
-
"grad_norm": 0.3117107796665858,
|
| 641 |
-
"learning_rate": 0.00017860530947427875,
|
| 642 |
-
"loss": 0.9772,
|
| 643 |
-
"step": 86
|
| 644 |
-
},
|
| 645 |
-
{
|
| 646 |
-
"epoch": 0.93,
|
| 647 |
-
"grad_norm": 0.28336227154677734,
|
| 648 |
-
"learning_rate": 0.0001780673851171728,
|
| 649 |
-
"loss": 1.0724,
|
| 650 |
-
"step": 87
|
| 651 |
-
},
|
| 652 |
-
{
|
| 653 |
-
"epoch": 0.94,
|
| 654 |
-
"grad_norm": 0.42707817919652674,
|
| 655 |
-
"learning_rate": 0.0001775236134864401,
|
| 656 |
-
"loss": 1.0038,
|
| 657 |
-
"step": 88
|
| 658 |
-
},
|
| 659 |
-
{
|
| 660 |
-
"epoch": 0.95,
|
| 661 |
-
"grad_norm": 0.29236016959846456,
|
| 662 |
-
"learning_rate": 0.0001769740353107602,
|
| 663 |
-
"loss": 1.0083,
|
| 664 |
-
"step": 89
|
| 665 |
-
},
|
| 666 |
-
{
|
| 667 |
-
"epoch": 0.96,
|
| 668 |
-
"grad_norm": 0.43295063403530637,
|
| 669 |
-
"learning_rate": 0.00017641869175372493,
|
| 670 |
-
"loss": 1.022,
|
| 671 |
-
"step": 90
|
| 672 |
-
},
|
| 673 |
-
{
|
| 674 |
-
"epoch": 0.97,
|
| 675 |
-
"grad_norm": 0.3086663897043129,
|
| 676 |
-
"learning_rate": 0.00017585762441075503,
|
| 677 |
-
"loss": 1.0303,
|
| 678 |
-
"step": 91
|
| 679 |
-
},
|
| 680 |
-
{
|
| 681 |
-
"epoch": 0.98,
|
| 682 |
-
"grad_norm": 0.2783768981163154,
|
| 683 |
-
"learning_rate": 0.0001752908753059849,
|
| 684 |
-
"loss": 1.061,
|
| 685 |
-
"step": 92
|
| 686 |
-
},
|
| 687 |
-
{
|
| 688 |
-
"epoch": 0.99,
|
| 689 |
-
"grad_norm": 0.43168501819843275,
|
| 690 |
-
"learning_rate": 0.00017471848688911464,
|
| 691 |
-
"loss": 1.0631,
|
| 692 |
-
"step": 93
|
| 693 |
-
},
|
| 694 |
-
{
|
| 695 |
-
"epoch": 1.0,
|
| 696 |
-
"grad_norm": 0.25487494913299935,
|
| 697 |
-
"learning_rate": 0.0001741405020322309,
|
| 698 |
-
"loss": 0.9858,
|
| 699 |
-
"step": 94
|
| 700 |
-
},
|
| 701 |
-
{
|
| 702 |
-
"epoch": 1.01,
|
| 703 |
-
"grad_norm": 0.3229761094582219,
|
| 704 |
-
"learning_rate": 0.00017355696402659548,
|
| 705 |
-
"loss": 0.9495,
|
| 706 |
-
"step": 95
|
| 707 |
-
},
|
| 708 |
-
{
|
| 709 |
-
"epoch": 1.02,
|
| 710 |
-
"grad_norm": 0.3178464701266748,
|
| 711 |
-
"learning_rate": 0.000172967916579403,
|
| 712 |
-
"loss": 0.9546,
|
| 713 |
-
"step": 96
|
| 714 |
-
},
|
| 715 |
-
{
|
| 716 |
-
"epoch": 1.02,
|
| 717 |
-
"eval_loss": 1.1303094625473022,
|
| 718 |
-
"eval_runtime": 119.6761,
|
| 719 |
-
"eval_samples_per_second": 8.348,
|
| 720 |
-
"eval_steps_per_second": 0.526,
|
| 721 |
-
"step": 96
|
| 722 |
-
},
|
| 723 |
-
{
|
| 724 |
-
"epoch": 1.04,
|
| 725 |
-
"grad_norm": 0.2534616980189548,
|
| 726 |
-
"learning_rate": 0.00017237340381050703,
|
| 727 |
-
"loss": 0.9509,
|
| 728 |
-
"step": 97
|
| 729 |
-
},
|
| 730 |
-
{
|
| 731 |
-
"epoch": 1.05,
|
| 732 |
-
"grad_norm": 0.2354382873554396,
|
| 733 |
-
"learning_rate": 0.00017177347024911562,
|
| 734 |
-
"loss": 0.9611,
|
| 735 |
-
"step": 98
|
| 736 |
-
},
|
| 737 |
-
{
|
| 738 |
-
"epoch": 1.06,
|
| 739 |
-
"grad_norm": 0.2754259154521738,
|
| 740 |
-
"learning_rate": 0.00017116816083045602,
|
| 741 |
-
"loss": 0.9184,
|
| 742 |
-
"step": 99
|
| 743 |
-
},
|
| 744 |
-
{
|
| 745 |
-
"epoch": 1.07,
|
| 746 |
-
"grad_norm": 0.25868181129480755,
|
| 747 |
-
"learning_rate": 0.00017055752089240907,
|
| 748 |
-
"loss": 0.957,
|
| 749 |
-
"step": 100
|
| 750 |
-
},
|
| 751 |
-
{
|
| 752 |
-
"epoch": 1.08,
|
| 753 |
-
"grad_norm": 0.2383943586330267,
|
| 754 |
-
"learning_rate": 0.00016994159617211317,
|
| 755 |
-
"loss": 0.9638,
|
| 756 |
-
"step": 101
|
| 757 |
-
},
|
| 758 |
-
{
|
| 759 |
-
"epoch": 1.09,
|
| 760 |
-
"grad_norm": 0.2706420372628291,
|
| 761 |
-
"learning_rate": 0.0001693204328025389,
|
| 762 |
-
"loss": 0.9115,
|
| 763 |
-
"step": 102
|
| 764 |
-
},
|
| 765 |
-
{
|
| 766 |
-
"epoch": 1.1,
|
| 767 |
-
"grad_norm": 0.2751042656041904,
|
| 768 |
-
"learning_rate": 0.0001686940773090333,
|
| 769 |
-
"loss": 0.9277,
|
| 770 |
-
"step": 103
|
| 771 |
-
},
|
| 772 |
-
{
|
| 773 |
-
"epoch": 1.11,
|
| 774 |
-
"grad_norm": 0.27700872737428867,
|
| 775 |
-
"learning_rate": 0.00016806257660583534,
|
| 776 |
-
"loss": 0.9248,
|
| 777 |
-
"step": 104
|
| 778 |
-
},
|
| 779 |
-
{
|
| 780 |
-
"epoch": 1.12,
|
| 781 |
-
"grad_norm": 0.3350046312844708,
|
| 782 |
-
"learning_rate": 0.00016742597799256182,
|
| 783 |
-
"loss": 0.928,
|
| 784 |
-
"step": 105
|
| 785 |
-
},
|
| 786 |
-
{
|
| 787 |
-
"epoch": 1.13,
|
| 788 |
-
"grad_norm": 0.4055944986440079,
|
| 789 |
-
"learning_rate": 0.00016678432915066488,
|
| 790 |
-
"loss": 0.9074,
|
| 791 |
-
"step": 106
|
| 792 |
-
},
|
| 793 |
-
{
|
| 794 |
-
"epoch": 1.14,
|
| 795 |
-
"grad_norm": 0.2515177402600531,
|
| 796 |
-
"learning_rate": 0.00016613767813986044,
|
| 797 |
-
"loss": 0.9564,
|
| 798 |
-
"step": 107
|
| 799 |
-
},
|
| 800 |
-
{
|
| 801 |
-
"epoch": 1.15,
|
| 802 |
-
"grad_norm": 0.2571149695502646,
|
| 803 |
-
"learning_rate": 0.00016548607339452853,
|
| 804 |
-
"loss": 0.93,
|
| 805 |
-
"step": 108
|
| 806 |
-
},
|
| 807 |
-
{
|
| 808 |
-
"epoch": 1.16,
|
| 809 |
-
"grad_norm": 0.38608942941048996,
|
| 810 |
-
"learning_rate": 0.0001648295637200856,
|
| 811 |
-
"loss": 0.9281,
|
| 812 |
-
"step": 109
|
| 813 |
-
},
|
| 814 |
-
{
|
| 815 |
-
"epoch": 1.17,
|
| 816 |
-
"grad_norm": 0.31939838976976676,
|
| 817 |
-
"learning_rate": 0.000164168198289329,
|
| 818 |
-
"loss": 0.9914,
|
| 819 |
-
"step": 110
|
| 820 |
-
},
|
| 821 |
-
{
|
| 822 |
-
"epoch": 1.19,
|
| 823 |
-
"grad_norm": 0.30504937567650897,
|
| 824 |
-
"learning_rate": 0.00016350202663875386,
|
| 825 |
-
"loss": 0.9549,
|
| 826 |
-
"step": 111
|
| 827 |
-
},
|
| 828 |
-
{
|
| 829 |
-
"epoch": 1.2,
|
| 830 |
-
"grad_norm": 0.3320388344291162,
|
| 831 |
-
"learning_rate": 0.0001628310986648427,
|
| 832 |
-
"loss": 0.9086,
|
| 833 |
-
"step": 112
|
| 834 |
-
},
|
| 835 |
-
{
|
| 836 |
-
"epoch": 1.21,
|
| 837 |
-
"grad_norm": 0.27715569151296165,
|
| 838 |
-
"learning_rate": 0.0001621554646203284,
|
| 839 |
-
"loss": 0.8537,
|
| 840 |
-
"step": 113
|
| 841 |
-
},
|
| 842 |
-
{
|
| 843 |
-
"epoch": 1.22,
|
| 844 |
-
"grad_norm": 0.278787508566418,
|
| 845 |
-
"learning_rate": 0.0001614751751104301,
|
| 846 |
-
"loss": 0.9354,
|
| 847 |
-
"step": 114
|
| 848 |
-
},
|
| 849 |
-
{
|
| 850 |
-
"epoch": 1.23,
|
| 851 |
-
"grad_norm": 0.24483614460003267,
|
| 852 |
-
"learning_rate": 0.00016079028108906282,
|
| 853 |
-
"loss": 0.8996,
|
| 854 |
-
"step": 115
|
| 855 |
-
},
|
| 856 |
-
{
|
| 857 |
-
"epoch": 1.24,
|
| 858 |
-
"grad_norm": 0.37520609596400134,
|
| 859 |
-
"learning_rate": 0.0001601008338550211,
|
| 860 |
-
"loss": 0.9514,
|
| 861 |
-
"step": 116
|
| 862 |
-
},
|
| 863 |
-
{
|
| 864 |
-
"epoch": 1.25,
|
| 865 |
-
"grad_norm": 0.2565631505653599,
|
| 866 |
-
"learning_rate": 0.00015940688504813662,
|
| 867 |
-
"loss": 0.8984,
|
| 868 |
-
"step": 117
|
| 869 |
-
},
|
| 870 |
-
{
|
| 871 |
-
"epoch": 1.26,
|
| 872 |
-
"grad_norm": 0.26348552476529935,
|
| 873 |
-
"learning_rate": 0.00015870848664541044,
|
| 874 |
-
"loss": 0.8941,
|
| 875 |
-
"step": 118
|
| 876 |
-
},
|
| 877 |
-
{
|
| 878 |
-
"epoch": 1.27,
|
| 879 |
-
"grad_norm": 0.32431198985496534,
|
| 880 |
-
"learning_rate": 0.00015800569095711982,
|
| 881 |
-
"loss": 0.8876,
|
| 882 |
-
"step": 119
|
| 883 |
-
},
|
| 884 |
-
{
|
| 885 |
-
"epoch": 1.28,
|
| 886 |
-
"grad_norm": 0.29308039763069227,
|
| 887 |
-
"learning_rate": 0.00015729855062290022,
|
| 888 |
-
"loss": 0.9309,
|
| 889 |
-
"step": 120
|
| 890 |
-
},
|
| 891 |
-
{
|
| 892 |
-
"epoch": 1.28,
|
| 893 |
-
"eval_loss": 1.129751205444336,
|
| 894 |
-
"eval_runtime": 119.1497,
|
| 895 |
-
"eval_samples_per_second": 8.384,
|
| 896 |
-
"eval_steps_per_second": 0.529,
|
| 897 |
-
"step": 120
|
| 898 |
-
},
|
| 899 |
-
{
|
| 900 |
-
"epoch": 1.29,
|
| 901 |
-
"grad_norm": 0.2793291380060977,
|
| 902 |
-
"learning_rate": 0.0001565871186078025,
|
| 903 |
-
"loss": 0.9453,
|
| 904 |
-
"step": 121
|
| 905 |
-
},
|
| 906 |
-
{
|
| 907 |
-
"epoch": 1.3,
|
| 908 |
-
"grad_norm": 0.28873644301555734,
|
| 909 |
-
"learning_rate": 0.000155871448198326,
|
| 910 |
-
"loss": 0.9243,
|
| 911 |
-
"step": 122
|
| 912 |
-
},
|
| 913 |
-
{
|
| 914 |
-
"epoch": 1.31,
|
| 915 |
-
"grad_norm": 0.3086103724578039,
|
| 916 |
-
"learning_rate": 0.00015515159299842707,
|
| 917 |
-
"loss": 0.8877,
|
| 918 |
-
"step": 123
|
| 919 |
-
},
|
| 920 |
-
{
|
| 921 |
-
"epoch": 1.32,
|
| 922 |
-
"grad_norm": 0.30407892484693505,
|
| 923 |
-
"learning_rate": 0.00015442760692550443,
|
| 924 |
-
"loss": 0.9448,
|
| 925 |
-
"step": 124
|
| 926 |
-
},
|
| 927 |
-
{
|
| 928 |
-
"epoch": 1.33,
|
| 929 |
-
"grad_norm": 0.29771602861368474,
|
| 930 |
-
"learning_rate": 0.00015369954420636048,
|
| 931 |
-
"loss": 0.889,
|
| 932 |
-
"step": 125
|
| 933 |
-
},
|
| 934 |
-
{
|
| 935 |
-
"epoch": 1.35,
|
| 936 |
-
"grad_norm": 0.30480490158838136,
|
| 937 |
-
"learning_rate": 0.00015296745937313987,
|
| 938 |
-
"loss": 0.9405,
|
| 939 |
-
"step": 126
|
| 940 |
-
},
|
| 941 |
-
{
|
| 942 |
-
"epoch": 1.36,
|
| 943 |
-
"grad_norm": 0.2949192855418127,
|
| 944 |
-
"learning_rate": 0.00015223140725924495,
|
| 945 |
-
"loss": 0.9382,
|
| 946 |
-
"step": 127
|
| 947 |
-
},
|
| 948 |
-
{
|
| 949 |
-
"epoch": 1.37,
|
| 950 |
-
"grad_norm": 0.2813631863132807,
|
| 951 |
-
"learning_rate": 0.00015149144299522873,
|
| 952 |
-
"loss": 0.9526,
|
| 953 |
-
"step": 128
|
| 954 |
-
},
|
| 955 |
-
{
|
| 956 |
-
"epoch": 1.38,
|
| 957 |
-
"grad_norm": 0.28548924064070513,
|
| 958 |
-
"learning_rate": 0.00015074762200466556,
|
| 959 |
-
"loss": 0.9174,
|
| 960 |
-
"step": 129
|
| 961 |
-
},
|
| 962 |
-
{
|
| 963 |
-
"epoch": 1.39,
|
| 964 |
-
"grad_norm": 0.28137053449960464,
|
| 965 |
-
"learning_rate": 0.00015000000000000001,
|
| 966 |
-
"loss": 0.9244,
|
| 967 |
-
"step": 130
|
| 968 |
-
},
|
| 969 |
-
{
|
| 970 |
-
"epoch": 1.4,
|
| 971 |
-
"grad_norm": 0.2626750895717777,
|
| 972 |
-
"learning_rate": 0.00014924863297837378,
|
| 973 |
-
"loss": 0.9335,
|
| 974 |
-
"step": 131
|
| 975 |
-
},
|
| 976 |
-
{
|
| 977 |
-
"epoch": 1.41,
|
| 978 |
-
"grad_norm": 0.26686502371015536,
|
| 979 |
-
"learning_rate": 0.00014849357721743168,
|
| 980 |
-
"loss": 0.8948,
|
| 981 |
-
"step": 132
|
| 982 |
-
},
|
| 983 |
-
{
|
| 984 |
-
"epoch": 1.42,
|
| 985 |
-
"grad_norm": 0.3332273481179679,
|
| 986 |
-
"learning_rate": 0.00014773488927110633,
|
| 987 |
-
"loss": 0.9274,
|
| 988 |
-
"step": 133
|
| 989 |
-
},
|
| 990 |
-
{
|
| 991 |
-
"epoch": 1.43,
|
| 992 |
-
"grad_norm": 0.2528048763375234,
|
| 993 |
-
"learning_rate": 0.00014697262596538227,
|
| 994 |
-
"loss": 0.8731,
|
| 995 |
-
"step": 134
|
| 996 |
-
},
|
| 997 |
-
{
|
| 998 |
-
"epoch": 1.44,
|
| 999 |
-
"grad_norm": 0.27184211707488076,
|
| 1000 |
-
"learning_rate": 0.00014620684439403962,
|
| 1001 |
-
"loss": 0.9318,
|
| 1002 |
-
"step": 135
|
| 1003 |
-
},
|
| 1004 |
-
{
|
| 1005 |
-
"epoch": 1.45,
|
| 1006 |
-
"grad_norm": 0.3051111137538683,
|
| 1007 |
-
"learning_rate": 0.0001454376019143779,
|
| 1008 |
-
"loss": 0.9447,
|
| 1009 |
-
"step": 136
|
| 1010 |
-
},
|
| 1011 |
-
{
|
| 1012 |
-
"epoch": 1.46,
|
| 1013 |
-
"grad_norm": 0.28771401659835155,
|
| 1014 |
-
"learning_rate": 0.00014466495614291977,
|
| 1015 |
-
"loss": 0.9343,
|
| 1016 |
-
"step": 137
|
| 1017 |
-
},
|
| 1018 |
-
{
|
| 1019 |
-
"epoch": 1.47,
|
| 1020 |
-
"grad_norm": 0.28995797921621524,
|
| 1021 |
-
"learning_rate": 0.0001438889649510956,
|
| 1022 |
-
"loss": 0.8978,
|
| 1023 |
-
"step": 138
|
| 1024 |
-
},
|
| 1025 |
-
{
|
| 1026 |
-
"epoch": 1.48,
|
| 1027 |
-
"grad_norm": 0.2749930548874636,
|
| 1028 |
-
"learning_rate": 0.00014310968646090883,
|
| 1029 |
-
"loss": 0.924,
|
| 1030 |
-
"step": 139
|
| 1031 |
-
},
|
| 1032 |
-
{
|
| 1033 |
-
"epoch": 1.49,
|
| 1034 |
-
"grad_norm": 0.3097189537380989,
|
| 1035 |
-
"learning_rate": 0.0001423271790405828,
|
| 1036 |
-
"loss": 0.9574,
|
| 1037 |
-
"step": 140
|
| 1038 |
-
},
|
| 1039 |
-
{
|
| 1040 |
-
"epoch": 1.51,
|
| 1041 |
-
"grad_norm": 0.2449218990319832,
|
| 1042 |
-
"learning_rate": 0.00014154150130018866,
|
| 1043 |
-
"loss": 0.8475,
|
| 1044 |
-
"step": 141
|
| 1045 |
-
},
|
| 1046 |
-
{
|
| 1047 |
-
"epoch": 1.52,
|
| 1048 |
-
"grad_norm": 0.24856388098419674,
|
| 1049 |
-
"learning_rate": 0.0001407527120872557,
|
| 1050 |
-
"loss": 0.9381,
|
| 1051 |
-
"step": 142
|
| 1052 |
-
},
|
| 1053 |
-
{
|
| 1054 |
-
"epoch": 1.53,
|
| 1055 |
-
"grad_norm": 0.3169861882853132,
|
| 1056 |
-
"learning_rate": 0.00013996087048236358,
|
| 1057 |
-
"loss": 0.9141,
|
| 1058 |
-
"step": 143
|
| 1059 |
-
},
|
| 1060 |
-
{
|
| 1061 |
-
"epoch": 1.54,
|
| 1062 |
-
"grad_norm": 0.30689184261103974,
|
| 1063 |
-
"learning_rate": 0.00013916603579471705,
|
| 1064 |
-
"loss": 0.9588,
|
| 1065 |
-
"step": 144
|
| 1066 |
-
},
|
| 1067 |
-
{
|
| 1068 |
-
"epoch": 1.54,
|
| 1069 |
-
"eval_loss": 1.1242448091506958,
|
| 1070 |
-
"eval_runtime": 119.0725,
|
| 1071 |
-
"eval_samples_per_second": 8.39,
|
| 1072 |
-
"eval_steps_per_second": 0.529,
|
| 1073 |
-
"step": 144
|
| 1074 |
-
},
|
| 1075 |
-
{
|
| 1076 |
-
"epoch": 1.55,
|
| 1077 |
-
"grad_norm": 0.2961514212977567,
|
| 1078 |
-
"learning_rate": 0.00013836826755770384,
|
| 1079 |
-
"loss": 0.9371,
|
| 1080 |
-
"step": 145
|
| 1081 |
-
},
|
| 1082 |
-
{
|
| 1083 |
-
"epoch": 1.56,
|
| 1084 |
-
"grad_norm": 0.30790856503439346,
|
| 1085 |
-
"learning_rate": 0.00013756762552443553,
|
| 1086 |
-
"loss": 0.9612,
|
| 1087 |
-
"step": 146
|
| 1088 |
-
},
|
| 1089 |
-
{
|
| 1090 |
-
"epoch": 1.57,
|
| 1091 |
-
"grad_norm": 0.3517398492864053,
|
| 1092 |
-
"learning_rate": 0.000136764169663272,
|
| 1093 |
-
"loss": 0.9253,
|
| 1094 |
-
"step": 147
|
| 1095 |
-
},
|
| 1096 |
-
{
|
| 1097 |
-
"epoch": 1.58,
|
| 1098 |
-
"grad_norm": 0.26375798832515857,
|
| 1099 |
-
"learning_rate": 0.00013595796015332984,
|
| 1100 |
-
"loss": 0.8977,
|
| 1101 |
-
"step": 148
|
| 1102 |
-
},
|
| 1103 |
-
{
|
| 1104 |
-
"epoch": 1.59,
|
| 1105 |
-
"grad_norm": 0.274348892672977,
|
| 1106 |
-
"learning_rate": 0.00013514905737997473,
|
| 1107 |
-
"loss": 0.8817,
|
| 1108 |
-
"step": 149
|
| 1109 |
-
},
|
| 1110 |
-
{
|
| 1111 |
-
"epoch": 1.6,
|
| 1112 |
-
"grad_norm": 0.35917564750751624,
|
| 1113 |
-
"learning_rate": 0.00013433752193029886,
|
| 1114 |
-
"loss": 0.886,
|
| 1115 |
-
"step": 150
|
| 1116 |
-
},
|
| 1117 |
-
{
|
| 1118 |
-
"epoch": 1.61,
|
| 1119 |
-
"grad_norm": 0.38175124377914293,
|
| 1120 |
-
"learning_rate": 0.00013352341458858265,
|
| 1121 |
-
"loss": 0.8576,
|
| 1122 |
-
"step": 151
|
| 1123 |
-
},
|
| 1124 |
-
{
|
| 1125 |
-
"epoch": 1.62,
|
| 1126 |
-
"grad_norm": 0.249633953215678,
|
| 1127 |
-
"learning_rate": 0.00013270679633174218,
|
| 1128 |
-
"loss": 1.0066,
|
| 1129 |
-
"step": 152
|
| 1130 |
-
},
|
| 1131 |
-
{
|
| 1132 |
-
"epoch": 1.63,
|
| 1133 |
-
"grad_norm": 0.33494494430574784,
|
| 1134 |
-
"learning_rate": 0.00013188772832476188,
|
| 1135 |
-
"loss": 0.884,
|
| 1136 |
-
"step": 153
|
| 1137 |
-
},
|
| 1138 |
-
{
|
| 1139 |
-
"epoch": 1.64,
|
| 1140 |
-
"grad_norm": 0.4176467296744032,
|
| 1141 |
-
"learning_rate": 0.00013106627191611332,
|
| 1142 |
-
"loss": 0.9041,
|
| 1143 |
-
"step": 154
|
| 1144 |
-
},
|
| 1145 |
-
{
|
| 1146 |
-
"epoch": 1.65,
|
| 1147 |
-
"grad_norm": 0.27051479454532207,
|
| 1148 |
-
"learning_rate": 0.00013024248863316012,
|
| 1149 |
-
"loss": 0.8764,
|
| 1150 |
-
"step": 155
|
| 1151 |
-
},
|
| 1152 |
-
{
|
| 1153 |
-
"epoch": 1.67,
|
| 1154 |
-
"grad_norm": 0.29302599029848847,
|
| 1155 |
-
"learning_rate": 0.00012941644017754964,
|
| 1156 |
-
"loss": 0.9786,
|
| 1157 |
-
"step": 156
|
| 1158 |
-
},
|
| 1159 |
-
{
|
| 1160 |
-
"epoch": 1.68,
|
| 1161 |
-
"grad_norm": 0.3127378512248151,
|
| 1162 |
-
"learning_rate": 0.00012858818842059145,
|
| 1163 |
-
"loss": 0.9176,
|
| 1164 |
-
"step": 157
|
| 1165 |
-
},
|
| 1166 |
-
{
|
| 1167 |
-
"epoch": 1.69,
|
| 1168 |
-
"grad_norm": 0.40647077063662906,
|
| 1169 |
-
"learning_rate": 0.00012775779539862304,
|
| 1170 |
-
"loss": 0.9387,
|
| 1171 |
-
"step": 158
|
| 1172 |
-
},
|
| 1173 |
-
{
|
| 1174 |
-
"epoch": 1.7,
|
| 1175 |
-
"grad_norm": 0.29290601694481777,
|
| 1176 |
-
"learning_rate": 0.00012692532330836346,
|
| 1177 |
-
"loss": 0.9192,
|
| 1178 |
-
"step": 159
|
| 1179 |
-
},
|
| 1180 |
-
{
|
| 1181 |
-
"epoch": 1.71,
|
| 1182 |
-
"grad_norm": 0.2819168741245354,
|
| 1183 |
-
"learning_rate": 0.0001260908345022547,
|
| 1184 |
-
"loss": 0.9253,
|
| 1185 |
-
"step": 160
|
| 1186 |
-
},
|
| 1187 |
-
{
|
| 1188 |
-
"epoch": 1.72,
|
| 1189 |
-
"grad_norm": 0.3772714091394927,
|
| 1190 |
-
"learning_rate": 0.00012525439148379128,
|
| 1191 |
-
"loss": 0.9264,
|
| 1192 |
-
"step": 161
|
| 1193 |
-
},
|
| 1194 |
-
{
|
| 1195 |
-
"epoch": 1.73,
|
| 1196 |
-
"grad_norm": 0.29399851067321503,
|
| 1197 |
-
"learning_rate": 0.00012441605690283915,
|
| 1198 |
-
"loss": 0.9357,
|
| 1199 |
-
"step": 162
|
| 1200 |
-
},
|
| 1201 |
-
{
|
| 1202 |
-
"epoch": 1.74,
|
| 1203 |
-
"grad_norm": 0.2623180246832513,
|
| 1204 |
-
"learning_rate": 0.00012357589355094275,
|
| 1205 |
-
"loss": 0.8516,
|
| 1206 |
-
"step": 163
|
| 1207 |
-
},
|
| 1208 |
-
{
|
| 1209 |
-
"epoch": 1.75,
|
| 1210 |
-
"grad_norm": 0.27796942024085824,
|
| 1211 |
-
"learning_rate": 0.00012273396435662212,
|
| 1212 |
-
"loss": 0.9328,
|
| 1213 |
-
"step": 164
|
| 1214 |
-
},
|
| 1215 |
-
{
|
| 1216 |
-
"epoch": 1.76,
|
| 1217 |
-
"grad_norm": 0.3107670297529076,
|
| 1218 |
-
"learning_rate": 0.0001218903323806595,
|
| 1219 |
-
"loss": 0.8769,
|
| 1220 |
-
"step": 165
|
| 1221 |
-
},
|
| 1222 |
-
{
|
| 1223 |
-
"epoch": 1.77,
|
| 1224 |
-
"grad_norm": 0.2865573350738354,
|
| 1225 |
-
"learning_rate": 0.00012104506081137608,
|
| 1226 |
-
"loss": 0.9015,
|
| 1227 |
-
"step": 166
|
| 1228 |
-
},
|
| 1229 |
-
{
|
| 1230 |
-
"epoch": 1.78,
|
| 1231 |
-
"grad_norm": 0.30595087117636693,
|
| 1232 |
-
"learning_rate": 0.00012019821295989912,
|
| 1233 |
-
"loss": 0.94,
|
| 1234 |
-
"step": 167
|
| 1235 |
-
},
|
| 1236 |
-
{
|
| 1237 |
-
"epoch": 1.79,
|
| 1238 |
-
"grad_norm": 0.32540365653257874,
|
| 1239 |
-
"learning_rate": 0.00011934985225541998,
|
| 1240 |
-
"loss": 0.8553,
|
| 1241 |
-
"step": 168
|
| 1242 |
-
},
|
| 1243 |
-
{
|
| 1244 |
-
"epoch": 1.79,
|
| 1245 |
-
"eval_loss": 1.1259374618530273,
|
| 1246 |
-
"eval_runtime": 119.4351,
|
| 1247 |
-
"eval_samples_per_second": 8.364,
|
| 1248 |
-
"eval_steps_per_second": 0.527,
|
| 1249 |
-
"step": 168
|
| 1250 |
-
},
|
| 1251 |
-
{
|
| 1252 |
-
"epoch": 1.8,
|
| 1253 |
-
"grad_norm": 0.3058868303314457,
|
| 1254 |
-
"learning_rate": 0.00011850004224044315,
|
| 1255 |
-
"loss": 0.9074,
|
| 1256 |
-
"step": 169
|
| 1257 |
-
},
|
| 1258 |
-
{
|
| 1259 |
-
"epoch": 1.81,
|
| 1260 |
-
"grad_norm": 0.33266760488242775,
|
| 1261 |
-
"learning_rate": 0.0001176488465660271,
|
| 1262 |
-
"loss": 0.8799,
|
| 1263 |
-
"step": 170
|
| 1264 |
-
},
|
| 1265 |
-
{
|
| 1266 |
-
"epoch": 1.83,
|
| 1267 |
-
"grad_norm": 0.3101183375673487,
|
| 1268 |
-
"learning_rate": 0.00011679632898701649,
|
| 1269 |
-
"loss": 0.9004,
|
| 1270 |
-
"step": 171
|
| 1271 |
-
},
|
| 1272 |
-
{
|
| 1273 |
-
"epoch": 1.84,
|
| 1274 |
-
"grad_norm": 0.31535579418195775,
|
| 1275 |
-
"learning_rate": 0.00011594255335726724,
|
| 1276 |
-
"loss": 0.9238,
|
| 1277 |
-
"step": 172
|
| 1278 |
-
},
|
| 1279 |
-
{
|
| 1280 |
-
"epoch": 1.85,
|
| 1281 |
-
"grad_norm": 0.28341827112854334,
|
| 1282 |
-
"learning_rate": 0.00011508758362486358,
|
| 1283 |
-
"loss": 0.9138,
|
| 1284 |
-
"step": 173
|
| 1285 |
-
},
|
| 1286 |
-
{
|
| 1287 |
-
"epoch": 1.86,
|
| 1288 |
-
"grad_norm": 0.25699888796695625,
|
| 1289 |
-
"learning_rate": 0.00011423148382732853,
|
| 1290 |
-
"loss": 0.9175,
|
| 1291 |
-
"step": 174
|
| 1292 |
-
},
|
| 1293 |
-
{
|
| 1294 |
-
"epoch": 1.87,
|
| 1295 |
-
"grad_norm": 0.29504332662698246,
|
| 1296 |
-
"learning_rate": 0.0001133743180868273,
|
| 1297 |
-
"loss": 0.9023,
|
| 1298 |
-
"step": 175
|
| 1299 |
-
},
|
| 1300 |
-
{
|
| 1301 |
-
"epoch": 1.88,
|
| 1302 |
-
"grad_norm": 0.2993175263873948,
|
| 1303 |
-
"learning_rate": 0.0001125161506053646,
|
| 1304 |
-
"loss": 0.8893,
|
| 1305 |
-
"step": 176
|
| 1306 |
-
},
|
| 1307 |
-
{
|
| 1308 |
-
"epoch": 1.89,
|
| 1309 |
-
"grad_norm": 0.2762659379409218,
|
| 1310 |
-
"learning_rate": 0.00011165704565997593,
|
| 1311 |
-
"loss": 0.9071,
|
| 1312 |
-
"step": 177
|
| 1313 |
-
},
|
| 1314 |
-
{
|
| 1315 |
-
"epoch": 1.9,
|
| 1316 |
-
"grad_norm": 0.23620994229530515,
|
| 1317 |
-
"learning_rate": 0.00011079706759791311,
|
| 1318 |
-
"loss": 0.8796,
|
| 1319 |
-
"step": 178
|
| 1320 |
-
},
|
| 1321 |
-
{
|
| 1322 |
-
"epoch": 1.91,
|
| 1323 |
-
"grad_norm": 0.28317619721877,
|
| 1324 |
-
"learning_rate": 0.00010993628083182467,
|
| 1325 |
-
"loss": 0.8983,
|
| 1326 |
-
"step": 179
|
| 1327 |
-
},
|
| 1328 |
-
{
|
| 1329 |
-
"epoch": 1.92,
|
| 1330 |
-
"grad_norm": 0.3252854551640304,
|
| 1331 |
-
"learning_rate": 0.00010907474983493144,
|
| 1332 |
-
"loss": 0.8947,
|
| 1333 |
-
"step": 180
|
| 1334 |
-
},
|
| 1335 |
-
{
|
| 1336 |
-
"epoch": 1.93,
|
| 1337 |
-
"grad_norm": 0.2579136274422669,
|
| 1338 |
-
"learning_rate": 0.00010821253913619726,
|
| 1339 |
-
"loss": 0.8726,
|
| 1340 |
-
"step": 181
|
| 1341 |
-
},
|
| 1342 |
-
{
|
| 1343 |
-
"epoch": 1.94,
|
| 1344 |
-
"grad_norm": 0.27201912720918364,
|
| 1345 |
-
"learning_rate": 0.00010734971331549603,
|
| 1346 |
-
"loss": 0.891,
|
| 1347 |
-
"step": 182
|
| 1348 |
-
},
|
| 1349 |
-
{
|
| 1350 |
-
"epoch": 1.95,
|
| 1351 |
-
"grad_norm": 0.41257277193589503,
|
| 1352 |
-
"learning_rate": 0.0001064863369987743,
|
| 1353 |
-
"loss": 0.9188,
|
| 1354 |
-
"step": 183
|
| 1355 |
-
},
|
| 1356 |
-
{
|
| 1357 |
-
"epoch": 1.96,
|
| 1358 |
-
"grad_norm": 0.264920112831242,
|
| 1359 |
-
"learning_rate": 0.00010562247485321115,
|
| 1360 |
-
"loss": 0.8761,
|
| 1361 |
-
"step": 184
|
| 1362 |
-
},
|
| 1363 |
-
{
|
| 1364 |
-
"epoch": 1.98,
|
| 1365 |
-
"grad_norm": 0.28166441056422037,
|
| 1366 |
-
"learning_rate": 0.00010475819158237425,
|
| 1367 |
-
"loss": 0.8805,
|
| 1368 |
-
"step": 185
|
| 1369 |
-
},
|
| 1370 |
-
{
|
| 1371 |
-
"epoch": 1.99,
|
| 1372 |
-
"grad_norm": 0.2818961139392159,
|
| 1373 |
-
"learning_rate": 0.00010389355192137377,
|
| 1374 |
-
"loss": 0.8934,
|
| 1375 |
-
"step": 186
|
| 1376 |
-
},
|
| 1377 |
-
{
|
| 1378 |
-
"epoch": 2.0,
|
| 1379 |
-
"grad_norm": 0.27424787600345923,
|
| 1380 |
-
"learning_rate": 0.00010302862063201367,
|
| 1381 |
-
"loss": 0.9237,
|
| 1382 |
-
"step": 187
|
| 1383 |
-
},
|
| 1384 |
-
{
|
| 1385 |
-
"epoch": 2.01,
|
| 1386 |
-
"grad_norm": 0.25570082666079225,
|
| 1387 |
-
"learning_rate": 0.00010216346249794087,
|
| 1388 |
-
"loss": 0.8656,
|
| 1389 |
-
"step": 188
|
| 1390 |
-
},
|
| 1391 |
-
{
|
| 1392 |
-
"epoch": 2.02,
|
| 1393 |
-
"grad_norm": 0.2712359904481713,
|
| 1394 |
-
"learning_rate": 0.0001012981423197931,
|
| 1395 |
-
"loss": 0.7627,
|
| 1396 |
-
"step": 189
|
| 1397 |
-
},
|
| 1398 |
-
{
|
| 1399 |
-
"epoch": 2.03,
|
| 1400 |
-
"grad_norm": 0.25054404547068676,
|
| 1401 |
-
"learning_rate": 0.00010043272491034523,
|
| 1402 |
-
"loss": 0.8142,
|
| 1403 |
-
"step": 190
|
| 1404 |
-
},
|
| 1405 |
-
{
|
| 1406 |
-
"epoch": 2.04,
|
| 1407 |
-
"grad_norm": 0.28520868420260026,
|
| 1408 |
-
"learning_rate": 9.956727508965481e-05,
|
| 1409 |
-
"loss": 0.7953,
|
| 1410 |
-
"step": 191
|
| 1411 |
-
},
|
| 1412 |
-
{
|
| 1413 |
-
"epoch": 2.05,
|
| 1414 |
-
"grad_norm": 0.29413880984694873,
|
| 1415 |
-
"learning_rate": 9.870185768020693e-05,
|
| 1416 |
-
"loss": 0.8231,
|
| 1417 |
-
"step": 192
|
| 1418 |
-
},
|
| 1419 |
-
{
|
| 1420 |
-
"epoch": 2.05,
|
| 1421 |
-
"eval_loss": 1.144862413406372,
|
| 1422 |
-
"eval_runtime": 119.3004,
|
| 1423 |
-
"eval_samples_per_second": 8.374,
|
| 1424 |
-
"eval_steps_per_second": 0.528,
|
| 1425 |
-
"step": 192
|
| 1426 |
-
},
|
| 1427 |
-
{
|
| 1428 |
-
"epoch": 2.06,
|
| 1429 |
-
"grad_norm": 0.28378300985247035,
|
| 1430 |
-
"learning_rate": 9.783653750205915e-05,
|
| 1431 |
-
"loss": 0.7478,
|
| 1432 |
-
"step": 193
|
| 1433 |
-
},
|
| 1434 |
-
{
|
| 1435 |
-
"epoch": 2.07,
|
| 1436 |
-
"grad_norm": 0.31792721348179676,
|
| 1437 |
-
"learning_rate": 9.697137936798634e-05,
|
| 1438 |
-
"loss": 0.7961,
|
| 1439 |
-
"step": 194
|
| 1440 |
-
},
|
| 1441 |
-
{
|
| 1442 |
-
"epoch": 2.08,
|
| 1443 |
-
"grad_norm": 0.3291666436295964,
|
| 1444 |
-
"learning_rate": 9.610644807862625e-05,
|
| 1445 |
-
"loss": 0.7434,
|
| 1446 |
-
"step": 195
|
| 1447 |
-
},
|
| 1448 |
-
{
|
| 1449 |
-
"epoch": 2.09,
|
| 1450 |
-
"grad_norm": 0.301579259001567,
|
| 1451 |
-
"learning_rate": 9.524180841762577e-05,
|
| 1452 |
-
"loss": 0.7779,
|
| 1453 |
-
"step": 196
|
| 1454 |
-
},
|
| 1455 |
-
{
|
| 1456 |
-
"epoch": 2.1,
|
| 1457 |
-
"grad_norm": 0.30252161240414444,
|
| 1458 |
-
"learning_rate": 9.437752514678887e-05,
|
| 1459 |
-
"loss": 0.7689,
|
| 1460 |
-
"step": 197
|
| 1461 |
-
},
|
| 1462 |
-
{
|
| 1463 |
-
"epoch": 2.11,
|
| 1464 |
-
"grad_norm": 0.3350657085129171,
|
| 1465 |
-
"learning_rate": 9.35136630012257e-05,
|
| 1466 |
-
"loss": 0.7574,
|
| 1467 |
-
"step": 198
|
| 1468 |
-
},
|
| 1469 |
-
{
|
| 1470 |
-
"epoch": 2.12,
|
| 1471 |
-
"grad_norm": 0.3053109929956358,
|
| 1472 |
-
"learning_rate": 9.265028668450402e-05,
|
| 1473 |
-
"loss": 0.7729,
|
| 1474 |
-
"step": 199
|
| 1475 |
-
},
|
| 1476 |
-
{
|
| 1477 |
-
"epoch": 2.14,
|
| 1478 |
-
"grad_norm": 0.30367223609567207,
|
| 1479 |
-
"learning_rate": 9.178746086380275e-05,
|
| 1480 |
-
"loss": 0.8111,
|
| 1481 |
-
"step": 200
|
| 1482 |
-
},
|
| 1483 |
-
{
|
| 1484 |
-
"epoch": 2.15,
|
| 1485 |
-
"grad_norm": 0.3366440949136126,
|
| 1486 |
-
"learning_rate": 9.092525016506858e-05,
|
| 1487 |
-
"loss": 0.7986,
|
| 1488 |
-
"step": 201
|
| 1489 |
-
},
|
| 1490 |
-
{
|
| 1491 |
-
"epoch": 2.16,
|
| 1492 |
-
"grad_norm": 0.3228036608413652,
|
| 1493 |
-
"learning_rate": 9.006371916817534e-05,
|
| 1494 |
-
"loss": 0.8382,
|
| 1495 |
-
"step": 202
|
| 1496 |
-
},
|
| 1497 |
-
{
|
| 1498 |
-
"epoch": 2.17,
|
| 1499 |
-
"grad_norm": 0.2919040789403488,
|
| 1500 |
-
"learning_rate": 8.920293240208694e-05,
|
| 1501 |
-
"loss": 0.7696,
|
| 1502 |
-
"step": 203
|
| 1503 |
-
},
|
| 1504 |
-
{
|
| 1505 |
-
"epoch": 2.18,
|
| 1506 |
-
"grad_norm": 0.30084198177583166,
|
| 1507 |
-
"learning_rate": 8.83429543400241e-05,
|
| 1508 |
-
"loss": 0.7671,
|
| 1509 |
-
"step": 204
|
| 1510 |
-
},
|
| 1511 |
-
{
|
| 1512 |
-
"epoch": 2.19,
|
| 1513 |
-
"grad_norm": 0.33931609000743107,
|
| 1514 |
-
"learning_rate": 8.748384939463543e-05,
|
| 1515 |
-
"loss": 0.7553,
|
| 1516 |
-
"step": 205
|
| 1517 |
-
},
|
| 1518 |
-
{
|
| 1519 |
-
"epoch": 2.2,
|
| 1520 |
-
"grad_norm": 0.30413284924824485,
|
| 1521 |
-
"learning_rate": 8.662568191317273e-05,
|
| 1522 |
-
"loss": 0.7324,
|
| 1523 |
-
"step": 206
|
| 1524 |
-
},
|
| 1525 |
-
{
|
| 1526 |
-
"epoch": 2.21,
|
| 1527 |
-
"grad_norm": 0.3014038998090481,
|
| 1528 |
-
"learning_rate": 8.57685161726715e-05,
|
| 1529 |
-
"loss": 0.7567,
|
| 1530 |
-
"step": 207
|
| 1531 |
-
},
|
| 1532 |
-
{
|
| 1533 |
-
"epoch": 2.22,
|
| 1534 |
-
"grad_norm": 0.3176466329519527,
|
| 1535 |
-
"learning_rate": 8.491241637513644e-05,
|
| 1536 |
-
"loss": 0.8222,
|
| 1537 |
-
"step": 208
|
| 1538 |
-
},
|
| 1539 |
-
{
|
| 1540 |
-
"epoch": 2.23,
|
| 1541 |
-
"grad_norm": 0.29981213041628285,
|
| 1542 |
-
"learning_rate": 8.405744664273278e-05,
|
| 1543 |
-
"loss": 0.7077,
|
| 1544 |
-
"step": 209
|
| 1545 |
-
},
|
| 1546 |
-
{
|
| 1547 |
-
"epoch": 2.24,
|
| 1548 |
-
"grad_norm": 0.2937916452228122,
|
| 1549 |
-
"learning_rate": 8.320367101298351e-05,
|
| 1550 |
-
"loss": 0.7231,
|
| 1551 |
-
"step": 210
|
| 1552 |
-
},
|
| 1553 |
-
{
|
| 1554 |
-
"epoch": 2.25,
|
| 1555 |
-
"grad_norm": 0.32040684171320816,
|
| 1556 |
-
"learning_rate": 8.235115343397295e-05,
|
| 1557 |
-
"loss": 0.7556,
|
| 1558 |
-
"step": 211
|
| 1559 |
-
},
|
| 1560 |
-
{
|
| 1561 |
-
"epoch": 2.26,
|
| 1562 |
-
"grad_norm": 0.31083028085316033,
|
| 1563 |
-
"learning_rate": 8.149995775955686e-05,
|
| 1564 |
-
"loss": 0.7514,
|
| 1565 |
-
"step": 212
|
| 1566 |
-
},
|
| 1567 |
-
{
|
| 1568 |
-
"epoch": 2.27,
|
| 1569 |
-
"grad_norm": 0.3215465383581194,
|
| 1570 |
-
"learning_rate": 8.065014774458003e-05,
|
| 1571 |
-
"loss": 0.7933,
|
| 1572 |
-
"step": 213
|
| 1573 |
-
},
|
| 1574 |
-
{
|
| 1575 |
-
"epoch": 2.28,
|
| 1576 |
-
"grad_norm": 0.3081200259196015,
|
| 1577 |
-
"learning_rate": 7.980178704010089e-05,
|
| 1578 |
-
"loss": 0.8062,
|
| 1579 |
-
"step": 214
|
| 1580 |
-
},
|
| 1581 |
-
{
|
| 1582 |
-
"epoch": 2.3,
|
| 1583 |
-
"grad_norm": 0.3333248296288759,
|
| 1584 |
-
"learning_rate": 7.895493918862396e-05,
|
| 1585 |
-
"loss": 0.7784,
|
| 1586 |
-
"step": 215
|
| 1587 |
-
},
|
| 1588 |
-
{
|
| 1589 |
-
"epoch": 2.31,
|
| 1590 |
-
"grad_norm": 0.3301326097292383,
|
| 1591 |
-
"learning_rate": 7.810966761934053e-05,
|
| 1592 |
-
"loss": 0.8154,
|
| 1593 |
-
"step": 216
|
| 1594 |
-
},
|
| 1595 |
-
{
|
| 1596 |
-
"epoch": 2.31,
|
| 1597 |
-
"eval_loss": 1.1513652801513672,
|
| 1598 |
-
"eval_runtime": 119.4371,
|
| 1599 |
-
"eval_samples_per_second": 8.364,
|
| 1600 |
-
"eval_steps_per_second": 0.527,
|
| 1601 |
-
"step": 216
|
| 1602 |
-
},
|
| 1603 |
-
{
|
| 1604 |
-
"epoch": 2.32,
|
| 1605 |
-
"grad_norm": 0.3166760836422428,
|
| 1606 |
-
"learning_rate": 7.726603564337791e-05,
|
| 1607 |
-
"loss": 0.7486,
|
| 1608 |
-
"step": 217
|
| 1609 |
-
},
|
| 1610 |
-
{
|
| 1611 |
-
"epoch": 2.33,
|
| 1612 |
-
"grad_norm": 0.31309757318131876,
|
| 1613 |
-
"learning_rate": 7.642410644905726e-05,
|
| 1614 |
-
"loss": 0.771,
|
| 1615 |
-
"step": 218
|
| 1616 |
-
},
|
| 1617 |
-
{
|
| 1618 |
-
"epoch": 2.34,
|
| 1619 |
-
"grad_norm": 0.36968796131043985,
|
| 1620 |
-
"learning_rate": 7.558394309716088e-05,
|
| 1621 |
-
"loss": 0.8051,
|
| 1622 |
-
"step": 219
|
| 1623 |
-
},
|
| 1624 |
-
{
|
| 1625 |
-
"epoch": 2.35,
|
| 1626 |
-
"grad_norm": 0.27537675917328025,
|
| 1627 |
-
"learning_rate": 7.474560851620873e-05,
|
| 1628 |
-
"loss": 0.7536,
|
| 1629 |
-
"step": 220
|
| 1630 |
-
},
|
| 1631 |
-
{
|
| 1632 |
-
"epoch": 2.36,
|
| 1633 |
-
"grad_norm": 0.2878011945022053,
|
| 1634 |
-
"learning_rate": 7.390916549774536e-05,
|
| 1635 |
-
"loss": 0.8126,
|
| 1636 |
-
"step": 221
|
| 1637 |
-
},
|
| 1638 |
-
{
|
| 1639 |
-
"epoch": 2.37,
|
| 1640 |
-
"grad_norm": 0.3172405217395398,
|
| 1641 |
-
"learning_rate": 7.307467669163655e-05,
|
| 1642 |
-
"loss": 0.8156,
|
| 1643 |
-
"step": 222
|
| 1644 |
-
},
|
| 1645 |
-
{
|
| 1646 |
-
"epoch": 2.38,
|
| 1647 |
-
"grad_norm": 0.3183651086957915,
|
| 1648 |
-
"learning_rate": 7.224220460137701e-05,
|
| 1649 |
-
"loss": 0.7821,
|
| 1650 |
-
"step": 223
|
| 1651 |
-
},
|
| 1652 |
-
{
|
| 1653 |
-
"epoch": 2.39,
|
| 1654 |
-
"grad_norm": 0.3318078467573977,
|
| 1655 |
-
"learning_rate": 7.141181157940859e-05,
|
| 1656 |
-
"loss": 0.7993,
|
| 1657 |
-
"step": 224
|
| 1658 |
-
},
|
| 1659 |
-
{
|
| 1660 |
-
"epoch": 2.4,
|
| 1661 |
-
"grad_norm": 0.28446170407344085,
|
| 1662 |
-
"learning_rate": 7.058355982245037e-05,
|
| 1663 |
-
"loss": 0.7987,
|
| 1664 |
-
"step": 225
|
| 1665 |
-
},
|
| 1666 |
-
{
|
| 1667 |
-
"epoch": 2.41,
|
| 1668 |
-
"grad_norm": 0.33568352702219995,
|
| 1669 |
-
"learning_rate": 6.97575113668399e-05,
|
| 1670 |
-
"loss": 0.773,
|
| 1671 |
-
"step": 226
|
| 1672 |
-
},
|
| 1673 |
-
{
|
| 1674 |
-
"epoch": 2.42,
|
| 1675 |
-
"grad_norm": 0.30820575901544944,
|
| 1676 |
-
"learning_rate": 6.893372808388675e-05,
|
| 1677 |
-
"loss": 0.813,
|
| 1678 |
-
"step": 227
|
| 1679 |
-
},
|
| 1680 |
-
{
|
| 1681 |
-
"epoch": 2.43,
|
| 1682 |
-
"grad_norm": 0.3121364386024255,
|
| 1683 |
-
"learning_rate": 6.811227167523815e-05,
|
| 1684 |
-
"loss": 0.7716,
|
| 1685 |
-
"step": 228
|
| 1686 |
-
},
|
| 1687 |
-
{
|
| 1688 |
-
"epoch": 2.44,
|
| 1689 |
-
"grad_norm": 0.3211455560922844,
|
| 1690 |
-
"learning_rate": 6.729320366825784e-05,
|
| 1691 |
-
"loss": 0.7577,
|
| 1692 |
-
"step": 229
|
| 1693 |
-
},
|
| 1694 |
-
{
|
| 1695 |
-
"epoch": 2.46,
|
| 1696 |
-
"grad_norm": 0.3315601260165869,
|
| 1697 |
-
"learning_rate": 6.647658541141735e-05,
|
| 1698 |
-
"loss": 0.779,
|
| 1699 |
-
"step": 230
|
| 1700 |
-
},
|
| 1701 |
-
{
|
| 1702 |
-
"epoch": 2.47,
|
| 1703 |
-
"grad_norm": 0.35482236759964675,
|
| 1704 |
-
"learning_rate": 6.566247806970119e-05,
|
| 1705 |
-
"loss": 0.7936,
|
| 1706 |
-
"step": 231
|
| 1707 |
-
},
|
| 1708 |
-
{
|
| 1709 |
-
"epoch": 2.48,
|
| 1710 |
-
"grad_norm": 0.3318703205331905,
|
| 1711 |
-
"learning_rate": 6.485094262002529e-05,
|
| 1712 |
-
"loss": 0.7721,
|
| 1713 |
-
"step": 232
|
| 1714 |
-
},
|
| 1715 |
-
{
|
| 1716 |
-
"epoch": 2.49,
|
| 1717 |
-
"grad_norm": 0.313412585518615,
|
| 1718 |
-
"learning_rate": 6.404203984667019e-05,
|
| 1719 |
-
"loss": 0.7333,
|
| 1720 |
-
"step": 233
|
| 1721 |
-
},
|
| 1722 |
-
{
|
| 1723 |
-
"epoch": 2.5,
|
| 1724 |
-
"grad_norm": 0.3389693444254627,
|
| 1725 |
-
"learning_rate": 6.323583033672799e-05,
|
| 1726 |
-
"loss": 0.6991,
|
| 1727 |
-
"step": 234
|
| 1728 |
-
},
|
| 1729 |
-
{
|
| 1730 |
-
"epoch": 2.51,
|
| 1731 |
-
"grad_norm": 0.33056782619334757,
|
| 1732 |
-
"learning_rate": 6.243237447556449e-05,
|
| 1733 |
-
"loss": 0.7872,
|
| 1734 |
-
"step": 235
|
| 1735 |
-
},
|
| 1736 |
-
{
|
| 1737 |
-
"epoch": 2.52,
|
| 1738 |
-
"grad_norm": 0.3064085209522584,
|
| 1739 |
-
"learning_rate": 6.163173244229619e-05,
|
| 1740 |
-
"loss": 0.7713,
|
| 1741 |
-
"step": 236
|
| 1742 |
-
},
|
| 1743 |
-
{
|
| 1744 |
-
"epoch": 2.53,
|
| 1745 |
-
"grad_norm": 0.3109445125421656,
|
| 1746 |
-
"learning_rate": 6.083396420528298e-05,
|
| 1747 |
-
"loss": 0.8228,
|
| 1748 |
-
"step": 237
|
| 1749 |
-
},
|
| 1750 |
-
{
|
| 1751 |
-
"epoch": 2.54,
|
| 1752 |
-
"grad_norm": 0.35767207742703394,
|
| 1753 |
-
"learning_rate": 6.0039129517636435e-05,
|
| 1754 |
-
"loss": 0.8167,
|
| 1755 |
-
"step": 238
|
| 1756 |
-
},
|
| 1757 |
-
{
|
| 1758 |
-
"epoch": 2.55,
|
| 1759 |
-
"grad_norm": 0.32869196909020376,
|
| 1760 |
-
"learning_rate": 5.924728791274432e-05,
|
| 1761 |
-
"loss": 0.7893,
|
| 1762 |
-
"step": 239
|
| 1763 |
-
},
|
| 1764 |
-
{
|
| 1765 |
-
"epoch": 2.56,
|
| 1766 |
-
"grad_norm": 0.31178216743238674,
|
| 1767 |
-
"learning_rate": 5.845849869981137e-05,
|
| 1768 |
-
"loss": 0.7354,
|
| 1769 |
-
"step": 240
|
| 1770 |
-
},
|
| 1771 |
-
{
|
| 1772 |
-
"epoch": 2.56,
|
| 1773 |
-
"eval_loss": 1.1470853090286255,
|
| 1774 |
-
"eval_runtime": 119.0749,
|
| 1775 |
-
"eval_samples_per_second": 8.39,
|
| 1776 |
-
"eval_steps_per_second": 0.529,
|
| 1777 |
-
"step": 240
|
| 1778 |
-
},
|
| 1779 |
-
{
|
| 1780 |
-
"epoch": 2.57,
|
| 1781 |
-
"grad_norm": 0.3146586486940167,
|
| 1782 |
-
"learning_rate": 5.7672820959417254e-05,
|
| 1783 |
-
"loss": 0.785,
|
| 1784 |
-
"step": 241
|
| 1785 |
-
},
|
| 1786 |
-
{
|
| 1787 |
-
"epoch": 2.58,
|
| 1788 |
-
"grad_norm": 0.3309473634570162,
|
| 1789 |
-
"learning_rate": 5.68903135390912e-05,
|
| 1790 |
-
"loss": 0.7007,
|
| 1791 |
-
"step": 242
|
| 1792 |
-
},
|
| 1793 |
-
{
|
| 1794 |
-
"epoch": 2.59,
|
| 1795 |
-
"grad_norm": 0.2927704203363025,
|
| 1796 |
-
"learning_rate": 5.611103504890444e-05,
|
| 1797 |
-
"loss": 0.778,
|
| 1798 |
-
"step": 243
|
| 1799 |
-
},
|
| 1800 |
-
{
|
| 1801 |
-
"epoch": 2.6,
|
| 1802 |
-
"grad_norm": 0.31346541530480915,
|
| 1803 |
-
"learning_rate": 5.533504385708024e-05,
|
| 1804 |
-
"loss": 0.7272,
|
| 1805 |
-
"step": 244
|
| 1806 |
-
},
|
| 1807 |
-
{
|
| 1808 |
-
"epoch": 2.62,
|
| 1809 |
-
"grad_norm": 0.2996345434845278,
|
| 1810 |
-
"learning_rate": 5.456239808562209e-05,
|
| 1811 |
-
"loss": 0.8091,
|
| 1812 |
-
"step": 245
|
| 1813 |
-
},
|
| 1814 |
-
{
|
| 1815 |
-
"epoch": 2.63,
|
| 1816 |
-
"grad_norm": 0.29407937930772826,
|
| 1817 |
-
"learning_rate": 5.379315560596038e-05,
|
| 1818 |
-
"loss": 0.7666,
|
| 1819 |
-
"step": 246
|
| 1820 |
-
},
|
| 1821 |
-
{
|
| 1822 |
-
"epoch": 2.64,
|
| 1823 |
-
"grad_norm": 0.30530254935425627,
|
| 1824 |
-
"learning_rate": 5.3027374034617785e-05,
|
| 1825 |
-
"loss": 0.7982,
|
| 1826 |
-
"step": 247
|
| 1827 |
-
},
|
| 1828 |
-
{
|
| 1829 |
-
"epoch": 2.65,
|
| 1830 |
-
"grad_norm": 0.3298149075133802,
|
| 1831 |
-
"learning_rate": 5.226511072889371e-05,
|
| 1832 |
-
"loss": 0.7962,
|
| 1833 |
-
"step": 248
|
| 1834 |
-
},
|
| 1835 |
-
{
|
| 1836 |
-
"epoch": 2.66,
|
| 1837 |
-
"grad_norm": 0.33155001378615223,
|
| 1838 |
-
"learning_rate": 5.1506422782568345e-05,
|
| 1839 |
-
"loss": 0.8087,
|
| 1840 |
-
"step": 249
|
| 1841 |
-
},
|
| 1842 |
-
{
|
| 1843 |
-
"epoch": 2.67,
|
| 1844 |
-
"grad_norm": 0.32891369446509405,
|
| 1845 |
-
"learning_rate": 5.0751367021626215e-05,
|
| 1846 |
-
"loss": 0.7702,
|
| 1847 |
-
"step": 250
|
| 1848 |
-
},
|
| 1849 |
-
{
|
| 1850 |
-
"epoch": 2.68,
|
| 1851 |
-
"grad_norm": 0.3042328939887202,
|
| 1852 |
-
"learning_rate": 5.000000000000002e-05,
|
| 1853 |
-
"loss": 0.7924,
|
| 1854 |
-
"step": 251
|
| 1855 |
-
},
|
| 1856 |
-
{
|
| 1857 |
-
"epoch": 2.69,
|
| 1858 |
-
"grad_norm": 0.3037799376581133,
|
| 1859 |
-
"learning_rate": 4.9252377995334444e-05,
|
| 1860 |
-
"loss": 0.7852,
|
| 1861 |
-
"step": 252
|
| 1862 |
-
},
|
| 1863 |
-
{
|
| 1864 |
-
"epoch": 2.7,
|
| 1865 |
-
"grad_norm": 0.3435430445603929,
|
| 1866 |
-
"learning_rate": 4.85085570047713e-05,
|
| 1867 |
-
"loss": 0.7501,
|
| 1868 |
-
"step": 253
|
| 1869 |
-
},
|
| 1870 |
-
{
|
| 1871 |
-
"epoch": 2.71,
|
| 1872 |
-
"grad_norm": 0.3072160193979946,
|
| 1873 |
-
"learning_rate": 4.776859274075506e-05,
|
| 1874 |
-
"loss": 0.7462,
|
| 1875 |
-
"step": 254
|
| 1876 |
-
},
|
| 1877 |
-
{
|
| 1878 |
-
"epoch": 2.72,
|
| 1879 |
-
"grad_norm": 0.3223586439500028,
|
| 1880 |
-
"learning_rate": 4.703254062686017e-05,
|
| 1881 |
-
"loss": 0.775,
|
| 1882 |
-
"step": 255
|
| 1883 |
-
},
|
| 1884 |
-
{
|
| 1885 |
-
"epoch": 2.73,
|
| 1886 |
-
"grad_norm": 0.3270406403084203,
|
| 1887 |
-
"learning_rate": 4.630045579363957e-05,
|
| 1888 |
-
"loss": 0.8306,
|
| 1889 |
-
"step": 256
|
| 1890 |
-
},
|
| 1891 |
-
{
|
| 1892 |
-
"epoch": 2.74,
|
| 1893 |
-
"grad_norm": 0.3360192842512657,
|
| 1894 |
-
"learning_rate": 4.557239307449561e-05,
|
| 1895 |
-
"loss": 0.7697,
|
| 1896 |
-
"step": 257
|
| 1897 |
-
},
|
| 1898 |
-
{
|
| 1899 |
-
"epoch": 2.75,
|
| 1900 |
-
"grad_norm": 0.34282816479900324,
|
| 1901 |
-
"learning_rate": 4.484840700157295e-05,
|
| 1902 |
-
"loss": 0.7654,
|
| 1903 |
-
"step": 258
|
| 1904 |
-
},
|
| 1905 |
-
{
|
| 1906 |
-
"epoch": 2.77,
|
| 1907 |
-
"grad_norm": 0.30039142762313786,
|
| 1908 |
-
"learning_rate": 4.412855180167406e-05,
|
| 1909 |
-
"loss": 0.7703,
|
| 1910 |
-
"step": 259
|
| 1911 |
-
},
|
| 1912 |
-
{
|
| 1913 |
-
"epoch": 2.78,
|
| 1914 |
-
"grad_norm": 0.34307884673711425,
|
| 1915 |
-
"learning_rate": 4.3412881392197526e-05,
|
| 1916 |
-
"loss": 0.7993,
|
| 1917 |
-
"step": 260
|
| 1918 |
-
},
|
| 1919 |
-
{
|
| 1920 |
-
"epoch": 2.79,
|
| 1921 |
-
"grad_norm": 0.33685538845268104,
|
| 1922 |
-
"learning_rate": 4.270144937709981e-05,
|
| 1923 |
-
"loss": 0.7866,
|
| 1924 |
-
"step": 261
|
| 1925 |
-
},
|
| 1926 |
-
{
|
| 1927 |
-
"epoch": 2.8,
|
| 1928 |
-
"grad_norm": 0.33166767859224683,
|
| 1929 |
-
"learning_rate": 4.19943090428802e-05,
|
| 1930 |
-
"loss": 0.8083,
|
| 1931 |
-
"step": 262
|
| 1932 |
-
},
|
| 1933 |
-
{
|
| 1934 |
-
"epoch": 2.81,
|
| 1935 |
-
"grad_norm": 0.3086370003245581,
|
| 1936 |
-
"learning_rate": 4.129151335458957e-05,
|
| 1937 |
-
"loss": 0.7938,
|
| 1938 |
-
"step": 263
|
| 1939 |
-
},
|
| 1940 |
-
{
|
| 1941 |
-
"epoch": 2.82,
|
| 1942 |
-
"grad_norm": 0.3715649674817313,
|
| 1943 |
-
"learning_rate": 4.059311495186338e-05,
|
| 1944 |
-
"loss": 0.7577,
|
| 1945 |
-
"step": 264
|
| 1946 |
-
},
|
| 1947 |
-
{
|
| 1948 |
-
"epoch": 2.82,
|
| 1949 |
-
"eval_loss": 1.1478512287139893,
|
| 1950 |
-
"eval_runtime": 119.1178,
|
| 1951 |
-
"eval_samples_per_second": 8.387,
|
| 1952 |
-
"eval_steps_per_second": 0.529,
|
| 1953 |
-
"step": 264
|
| 1954 |
-
},
|
| 1955 |
-
{
|
| 1956 |
-
"epoch": 2.83,
|
| 1957 |
-
"grad_norm": 0.3298033298390841,
|
| 1958 |
-
"learning_rate": 3.9899166144978904e-05,
|
| 1959 |
-
"loss": 0.8296,
|
| 1960 |
-
"step": 265
|
| 1961 |
-
},
|
| 1962 |
-
{
|
| 1963 |
-
"epoch": 2.84,
|
| 1964 |
-
"grad_norm": 0.3294808666769515,
|
| 1965 |
-
"learning_rate": 3.920971891093718e-05,
|
| 1966 |
-
"loss": 0.8206,
|
| 1967 |
-
"step": 266
|
| 1968 |
-
},
|
| 1969 |
-
{
|
| 1970 |
-
"epoch": 2.85,
|
| 1971 |
-
"grad_norm": 0.3239672501165848,
|
| 1972 |
-
"learning_rate": 3.852482488956992e-05,
|
| 1973 |
-
"loss": 0.8116,
|
| 1974 |
-
"step": 267
|
| 1975 |
-
},
|
| 1976 |
-
{
|
| 1977 |
-
"epoch": 2.86,
|
| 1978 |
-
"grad_norm": 0.3286742994048133,
|
| 1979 |
-
"learning_rate": 3.784453537967161e-05,
|
| 1980 |
-
"loss": 0.8096,
|
| 1981 |
-
"step": 268
|
| 1982 |
-
},
|
| 1983 |
-
{
|
| 1984 |
-
"epoch": 2.87,
|
| 1985 |
-
"grad_norm": 0.31259050250842946,
|
| 1986 |
-
"learning_rate": 3.7168901335157315e-05,
|
| 1987 |
-
"loss": 0.7669,
|
| 1988 |
-
"step": 269
|
| 1989 |
-
},
|
| 1990 |
-
{
|
| 1991 |
-
"epoch": 2.88,
|
| 1992 |
-
"grad_norm": 0.3308991711135206,
|
| 1993 |
-
"learning_rate": 3.649797336124615e-05,
|
| 1994 |
-
"loss": 0.8041,
|
| 1995 |
-
"step": 270
|
| 1996 |
-
},
|
| 1997 |
-
{
|
| 1998 |
-
"epoch": 2.89,
|
| 1999 |
-
"grad_norm": 0.32757727002633424,
|
| 2000 |
-
"learning_rate": 3.583180171067101e-05,
|
| 2001 |
-
"loss": 0.7673,
|
| 2002 |
-
"step": 271
|
| 2003 |
-
},
|
| 2004 |
-
{
|
| 2005 |
-
"epoch": 2.9,
|
| 2006 |
-
"grad_norm": 0.3342551756453125,
|
| 2007 |
-
"learning_rate": 3.517043627991441e-05,
|
| 2008 |
-
"loss": 0.8005,
|
| 2009 |
-
"step": 272
|
| 2010 |
-
},
|
| 2011 |
-
{
|
| 2012 |
-
"epoch": 2.91,
|
| 2013 |
-
"grad_norm": 0.31643754309861705,
|
| 2014 |
-
"learning_rate": 3.45139266054715e-05,
|
| 2015 |
-
"loss": 0.787,
|
| 2016 |
-
"step": 273
|
| 2017 |
-
},
|
| 2018 |
-
{
|
| 2019 |
-
"epoch": 2.93,
|
| 2020 |
-
"grad_norm": 0.3140452683879005,
|
| 2021 |
-
"learning_rate": 3.3862321860139576e-05,
|
| 2022 |
-
"loss": 0.7888,
|
| 2023 |
-
"step": 274
|
| 2024 |
-
},
|
| 2025 |
-
{
|
| 2026 |
-
"epoch": 2.94,
|
| 2027 |
-
"grad_norm": 0.30706221155036223,
|
| 2028 |
-
"learning_rate": 3.3215670849335155e-05,
|
| 2029 |
-
"loss": 0.827,
|
| 2030 |
-
"step": 275
|
| 2031 |
-
},
|
| 2032 |
-
{
|
| 2033 |
-
"epoch": 2.95,
|
| 2034 |
-
"grad_norm": 0.3185483102727301,
|
| 2035 |
-
"learning_rate": 3.257402200743821e-05,
|
| 2036 |
-
"loss": 0.7779,
|
| 2037 |
-
"step": 276
|
| 2038 |
-
},
|
| 2039 |
-
{
|
| 2040 |
-
"epoch": 2.96,
|
| 2041 |
-
"grad_norm": 0.3032818796307545,
|
| 2042 |
-
"learning_rate": 3.19374233941647e-05,
|
| 2043 |
-
"loss": 0.7993,
|
| 2044 |
-
"step": 277
|
| 2045 |
-
},
|
| 2046 |
-
{
|
| 2047 |
-
"epoch": 2.97,
|
| 2048 |
-
"grad_norm": 0.3057758504695884,
|
| 2049 |
-
"learning_rate": 3.130592269096671e-05,
|
| 2050 |
-
"loss": 0.768,
|
| 2051 |
-
"step": 278
|
| 2052 |
-
},
|
| 2053 |
-
{
|
| 2054 |
-
"epoch": 2.98,
|
| 2055 |
-
"grad_norm": 0.3245404038219604,
|
| 2056 |
-
"learning_rate": 3.0679567197461134e-05,
|
| 2057 |
-
"loss": 0.7706,
|
| 2058 |
-
"step": 279
|
| 2059 |
-
}
|
| 2060 |
-
],
|
| 2061 |
-
"logging_steps": 1,
|
| 2062 |
-
"max_steps": 372,
|
| 2063 |
-
"num_input_tokens_seen": 0,
|
| 2064 |
-
"num_train_epochs": 4,
|
| 2065 |
-
"save_steps": 93,
|
| 2066 |
-
"total_flos": 5.168039211319689e+18,
|
| 2067 |
-
"train_batch_size": 4,
|
| 2068 |
-
"trial_name": null,
|
| 2069 |
-
"trial_params": null
|
| 2070 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c56515a18cd914d4eee44c09952d3a756ea623b0b6e69e8dfaeb0dbc7b665f46
|
| 3 |
-
size 6776
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,592 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
-
# Copyright (c) Microsoft Corporation.
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
# DeepSpeed Team
|
| 7 |
-
|
| 8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
-
# application.
|
| 12 |
-
#
|
| 13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
-
|
| 15 |
-
import argparse
|
| 16 |
-
import torch
|
| 17 |
-
import glob
|
| 18 |
-
import math
|
| 19 |
-
import os
|
| 20 |
-
import re
|
| 21 |
-
from collections import OrderedDict
|
| 22 |
-
from dataclasses import dataclass
|
| 23 |
-
|
| 24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
-
from deepspeed.utils import logger
|
| 27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
@dataclass
|
| 33 |
-
class zero_model_state:
|
| 34 |
-
buffers: dict()
|
| 35 |
-
param_shapes: dict()
|
| 36 |
-
shared_params: list
|
| 37 |
-
ds_version: int
|
| 38 |
-
frozen_param_shapes: dict()
|
| 39 |
-
frozen_param_fragments: dict()
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
debug = 0
|
| 43 |
-
|
| 44 |
-
# load to cpu
|
| 45 |
-
device = torch.device('cpu')
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def atoi(text):
|
| 49 |
-
return int(text) if text.isdigit() else text
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def natural_keys(text):
|
| 53 |
-
'''
|
| 54 |
-
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
-
(See Toothy's implementation in the comments)
|
| 57 |
-
'''
|
| 58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
-
if not os.path.isdir(checkpoint_dir):
|
| 63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
-
|
| 65 |
-
# there should be only one file
|
| 66 |
-
if zero_stage <= 2:
|
| 67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
-
elif zero_stage == 3:
|
| 69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
-
|
| 71 |
-
if not os.path.exists(file):
|
| 72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
-
|
| 74 |
-
return file
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
-
|
| 81 |
-
if len(ckpt_files) == 0:
|
| 82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
-
|
| 84 |
-
return ckpt_files
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def get_optim_files(checkpoint_dir):
|
| 88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def get_model_state_files(checkpoint_dir):
|
| 92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def parse_model_states(files):
|
| 96 |
-
zero_model_states = []
|
| 97 |
-
for file in files:
|
| 98 |
-
state_dict = torch.load(file, map_location=device)
|
| 99 |
-
|
| 100 |
-
if BUFFER_NAMES not in state_dict:
|
| 101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
-
if debug:
|
| 104 |
-
print("Found buffers:", buffer_names)
|
| 105 |
-
|
| 106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
-
|
| 110 |
-
# collect parameters that are included in param_shapes
|
| 111 |
-
param_names = []
|
| 112 |
-
for s in param_shapes:
|
| 113 |
-
for name in s.keys():
|
| 114 |
-
param_names.append(name)
|
| 115 |
-
|
| 116 |
-
# update with frozen parameters
|
| 117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
-
if frozen_param_shapes is not None:
|
| 119 |
-
if debug:
|
| 120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
-
param_names += list(frozen_param_shapes.keys())
|
| 122 |
-
|
| 123 |
-
# handle shared params
|
| 124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
-
|
| 126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
-
|
| 128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
-
|
| 130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
-
param_shapes=param_shapes,
|
| 132 |
-
shared_params=shared_params,
|
| 133 |
-
ds_version=ds_version,
|
| 134 |
-
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
-
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
-
zero_model_states.append(z_model_state)
|
| 137 |
-
|
| 138 |
-
return zero_model_states
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
-
|
| 143 |
-
total_files = len(files)
|
| 144 |
-
state_dicts = []
|
| 145 |
-
for f in files:
|
| 146 |
-
state_dict = torch.load(f, map_location=device)
|
| 147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
-
# and also handle the case where it was already removed by another helper script
|
| 149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
-
state_dicts.append(state_dict)
|
| 151 |
-
|
| 152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
-
|
| 157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
-
# use the max of the partition_count to get the dp world_size.
|
| 160 |
-
|
| 161 |
-
if type(world_size) is list:
|
| 162 |
-
world_size = max(world_size)
|
| 163 |
-
|
| 164 |
-
if world_size != total_files:
|
| 165 |
-
raise ValueError(
|
| 166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# the groups are named differently in each stage
|
| 171 |
-
if zero_stage <= 2:
|
| 172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
-
elif zero_stage == 3:
|
| 174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
-
else:
|
| 176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
-
|
| 178 |
-
if zero_stage <= 2:
|
| 179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
-
elif zero_stage == 3:
|
| 181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
-
#
|
| 184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
-
|
| 187 |
-
fp32_flat_groups = [
|
| 188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
-
]
|
| 190 |
-
|
| 191 |
-
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
-
"""
|
| 196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
-
|
| 198 |
-
Args:
|
| 199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
-
|
| 201 |
-
"""
|
| 202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
-
|
| 204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
-
|
| 208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
-
|
| 210 |
-
zero_model_states = parse_model_states(model_files)
|
| 211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
-
|
| 213 |
-
if zero_stage <= 2:
|
| 214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
-
elif zero_stage == 3:
|
| 216 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
-
return
|
| 222 |
-
|
| 223 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
-
|
| 226 |
-
if debug:
|
| 227 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
-
|
| 230 |
-
wanted_params = len(frozen_param_shapes)
|
| 231 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
-
|
| 236 |
-
total_params = 0
|
| 237 |
-
total_numel = 0
|
| 238 |
-
for name, shape in frozen_param_shapes.items():
|
| 239 |
-
total_params += 1
|
| 240 |
-
unpartitioned_numel = shape.numel()
|
| 241 |
-
total_numel += unpartitioned_numel
|
| 242 |
-
|
| 243 |
-
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
-
|
| 245 |
-
if debug:
|
| 246 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
-
|
| 248 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def _has_callable(obj, fn):
|
| 252 |
-
attr = getattr(obj, fn, None)
|
| 253 |
-
return callable(attr)
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
-
|
| 259 |
-
# Reconstruction protocol:
|
| 260 |
-
#
|
| 261 |
-
# XXX: document this
|
| 262 |
-
|
| 263 |
-
if debug:
|
| 264 |
-
for i in range(world_size):
|
| 265 |
-
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
-
|
| 268 |
-
# XXX: memory usage doubles here (zero2)
|
| 269 |
-
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
-
merged_single_partition_of_fp32_groups = []
|
| 271 |
-
for i in range(num_param_groups):
|
| 272 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
-
avail_numel = sum(
|
| 276 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
-
|
| 278 |
-
if debug:
|
| 279 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
-
# not asserting if there is a mismatch due to possible padding
|
| 282 |
-
print(f"Have {avail_numel} numels to process.")
|
| 283 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
-
|
| 285 |
-
# params
|
| 286 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
-
# out-of-core computing solution
|
| 288 |
-
total_numel = 0
|
| 289 |
-
total_params = 0
|
| 290 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
-
offset = 0
|
| 292 |
-
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
-
for name, shape in shapes.items():
|
| 294 |
-
|
| 295 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
-
total_numel += unpartitioned_numel
|
| 297 |
-
total_params += 1
|
| 298 |
-
|
| 299 |
-
if debug:
|
| 300 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
-
offset += unpartitioned_numel
|
| 303 |
-
|
| 304 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
-
align_to = 2 * world_size
|
| 309 |
-
|
| 310 |
-
def zero2_align(x):
|
| 311 |
-
return align_to * math.ceil(x / align_to)
|
| 312 |
-
|
| 313 |
-
if debug:
|
| 314 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
-
|
| 316 |
-
offset = zero2_align(offset)
|
| 317 |
-
avail_numel = zero2_align(avail_numel)
|
| 318 |
-
|
| 319 |
-
if debug:
|
| 320 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
-
|
| 322 |
-
# Sanity check
|
| 323 |
-
if offset != avail_numel:
|
| 324 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
-
|
| 326 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
-
state_dict = OrderedDict()
|
| 331 |
-
|
| 332 |
-
# buffers
|
| 333 |
-
buffers = zero_model_states[0].buffers
|
| 334 |
-
state_dict.update(buffers)
|
| 335 |
-
if debug:
|
| 336 |
-
print(f"added {len(buffers)} buffers")
|
| 337 |
-
|
| 338 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
-
|
| 340 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
-
|
| 342 |
-
# recover shared parameters
|
| 343 |
-
for pair in zero_model_states[0].shared_params:
|
| 344 |
-
if pair[1] in state_dict:
|
| 345 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
-
|
| 347 |
-
return state_dict
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
-
remainder = unpartitioned_numel % world_size
|
| 352 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
-
return partitioned_numel, padding_numel
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
-
return
|
| 360 |
-
|
| 361 |
-
if debug:
|
| 362 |
-
for i in range(world_size):
|
| 363 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
-
|
| 366 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
-
wanted_params = len(frozen_param_shapes)
|
| 368 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
-
|
| 373 |
-
total_params = 0
|
| 374 |
-
total_numel = 0
|
| 375 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
-
total_params += 1
|
| 377 |
-
unpartitioned_numel = shape.numel()
|
| 378 |
-
total_numel += unpartitioned_numel
|
| 379 |
-
|
| 380 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
-
|
| 383 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
-
|
| 385 |
-
if debug:
|
| 386 |
-
print(
|
| 387 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
-
)
|
| 389 |
-
|
| 390 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
-
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
-
|
| 399 |
-
# merge list of dicts, preserving order
|
| 400 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
-
|
| 402 |
-
if debug:
|
| 403 |
-
for i in range(world_size):
|
| 404 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
-
|
| 406 |
-
wanted_params = len(param_shapes)
|
| 407 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
-
# not asserting if there is a mismatch due to possible padding
|
| 409 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
-
|
| 413 |
-
# params
|
| 414 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
-
# out-of-core computing solution
|
| 416 |
-
offset = 0
|
| 417 |
-
total_numel = 0
|
| 418 |
-
total_params = 0
|
| 419 |
-
for name, shape in param_shapes.items():
|
| 420 |
-
|
| 421 |
-
unpartitioned_numel = shape.numel()
|
| 422 |
-
total_numel += unpartitioned_numel
|
| 423 |
-
total_params += 1
|
| 424 |
-
|
| 425 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
-
|
| 427 |
-
if debug:
|
| 428 |
-
print(
|
| 429 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
# XXX: memory usage doubles here
|
| 433 |
-
state_dict[name] = torch.cat(
|
| 434 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
-
offset += partitioned_numel
|
| 437 |
-
|
| 438 |
-
offset *= world_size
|
| 439 |
-
|
| 440 |
-
# Sanity check
|
| 441 |
-
if offset != avail_numel:
|
| 442 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
-
|
| 444 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
-
state_dict = OrderedDict()
|
| 449 |
-
|
| 450 |
-
# buffers
|
| 451 |
-
buffers = zero_model_states[0].buffers
|
| 452 |
-
state_dict.update(buffers)
|
| 453 |
-
if debug:
|
| 454 |
-
print(f"added {len(buffers)} buffers")
|
| 455 |
-
|
| 456 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
-
|
| 458 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
-
|
| 460 |
-
# recover shared parameters
|
| 461 |
-
for pair in zero_model_states[0].shared_params:
|
| 462 |
-
if pair[1] in state_dict:
|
| 463 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
-
|
| 465 |
-
return state_dict
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
-
"""
|
| 470 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
-
via a model hub.
|
| 473 |
-
|
| 474 |
-
Args:
|
| 475 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
-
|
| 478 |
-
Returns:
|
| 479 |
-
- pytorch ``state_dict``
|
| 480 |
-
|
| 481 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
-
the checkpoint.
|
| 484 |
-
|
| 485 |
-
A typical usage might be ::
|
| 486 |
-
|
| 487 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
-
# do the training and checkpoint saving
|
| 489 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
-
model = model.cpu() # move to cpu
|
| 491 |
-
model.load_state_dict(state_dict)
|
| 492 |
-
# submit to model hub or save the model to share with others
|
| 493 |
-
|
| 494 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
-
|
| 498 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
-
|
| 500 |
-
"""
|
| 501 |
-
if tag is None:
|
| 502 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
-
if os.path.isfile(latest_path):
|
| 504 |
-
with open(latest_path, 'r') as fd:
|
| 505 |
-
tag = fd.read().strip()
|
| 506 |
-
else:
|
| 507 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
-
|
| 509 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
-
|
| 511 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
-
|
| 514 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
-
"""
|
| 519 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
-
|
| 522 |
-
Args:
|
| 523 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
-
"""
|
| 527 |
-
|
| 528 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
-
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
-
torch.save(state_dict, output_file)
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
-
"""
|
| 535 |
-
1. Put the provided model to cpu
|
| 536 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
-
3. Load it into the provided model
|
| 538 |
-
|
| 539 |
-
Args:
|
| 540 |
-
- ``model``: the model object to update
|
| 541 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
-
|
| 544 |
-
Returns:
|
| 545 |
-
- ``model`: modified model
|
| 546 |
-
|
| 547 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
-
conveniently placed for you in the checkpoint folder.
|
| 550 |
-
|
| 551 |
-
A typical usage might be ::
|
| 552 |
-
|
| 553 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
-
# submit to model hub or save the model to share with others
|
| 556 |
-
|
| 557 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
-
|
| 561 |
-
"""
|
| 562 |
-
logger.info(f"Extracting fp32 weights")
|
| 563 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
-
|
| 565 |
-
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
-
model = model.cpu()
|
| 567 |
-
model.load_state_dict(state_dict, strict=False)
|
| 568 |
-
|
| 569 |
-
return model
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
if __name__ == "__main__":
|
| 573 |
-
|
| 574 |
-
parser = argparse.ArgumentParser()
|
| 575 |
-
parser.add_argument("checkpoint_dir",
|
| 576 |
-
type=str,
|
| 577 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
-
parser.add_argument(
|
| 579 |
-
"output_file",
|
| 580 |
-
type=str,
|
| 581 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
-
parser.add_argument("-t",
|
| 583 |
-
"--tag",
|
| 584 |
-
type=str,
|
| 585 |
-
default=None,
|
| 586 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
-
args = parser.parse_args()
|
| 589 |
-
|
| 590 |
-
debug = args.debug
|
| 591 |
-
|
| 592 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,202 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: peft
|
| 3 |
-
base_model: google/gemma-2b
|
| 4 |
-
---
|
| 5 |
-
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"alpha_pattern": {},
|
| 3 |
-
"auto_mapping": null,
|
| 4 |
-
"base_model_name_or_path": "google/gemma-2b",
|
| 5 |
-
"bias": "none",
|
| 6 |
-
"fan_in_fan_out": null,
|
| 7 |
-
"inference_mode": true,
|
| 8 |
-
"init_lora_weights": true,
|
| 9 |
-
"layers_pattern": null,
|
| 10 |
-
"layers_to_transform": null,
|
| 11 |
-
"loftq_config": {},
|
| 12 |
-
"lora_alpha": 16,
|
| 13 |
-
"lora_dropout": 0.05,
|
| 14 |
-
"megatron_config": null,
|
| 15 |
-
"megatron_core": "megatron.core",
|
| 16 |
-
"modules_to_save": null,
|
| 17 |
-
"peft_type": "LORA",
|
| 18 |
-
"r": 32,
|
| 19 |
-
"rank_pattern": {},
|
| 20 |
-
"revision": null,
|
| 21 |
-
"target_modules": [
|
| 22 |
-
"up_proj",
|
| 23 |
-
"q_proj",
|
| 24 |
-
"v_proj",
|
| 25 |
-
"down_proj",
|
| 26 |
-
"gate_proj",
|
| 27 |
-
"k_proj",
|
| 28 |
-
"o_proj"
|
| 29 |
-
],
|
| 30 |
-
"task_type": "CAUSAL_LM",
|
| 31 |
-
"use_dora": false,
|
| 32 |
-
"use_rslora": false
|
| 33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5ce5c9479f7b4e2f4f1c71ed29d0ec95f79e1731de4be9d3f7759abe3043fcdc
|
| 3 |
-
size 78480320
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5f204930ec4f2a105b656f8596b32abc5228db4def6b1aa8c6f63fe8c492820e
|
| 3 |
-
size 58886928
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:bd427c55f17c0510ec2ed53fe5e319eb0a2c4761d4083df28d11ba7aa84e5a15
|
| 3 |
-
size 58885968
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:6271e5b9edc1d160ad0326ac1a89d8d44ef09363904f40271525aff81aa3b01d
|
| 3 |
-
size 58886992
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5abf7c61e69335a8e881c7220e7017eb5372fdf817a3b0d26486e4faab795701
|
| 3 |
-
size 58886032
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8dbda4b13cb1e71570782ac3ce184727dbacb34070d7b08deeb937890375555c
|
| 3 |
-
size 1159049922
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step336
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:28b9cac536dcc2f0fcb0db1a7ed44d898a5e257f0e6a2dde4782893acb56ce7d
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d3ee31ce56c4f2248ab7aaf5beaf8d895447d28644df750b83cc2177262498de
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a615e7b3e06287a0e82a15b753b1c48c658347992fbb7d59ee5836d824655ebd
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fe5c5388f4cf688aa51717160bed97071e825a07ba7d9a22897241c258de91d9
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:033700c231840b794630147afe6dca04265ec61bb681c241b2e3012bcb9cc8a3
|
| 3 |
-
size 1064
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,2477 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"best_metric": 1.203959345817566,
|
| 3 |
-
"best_model_checkpoint": "./out/checkpoint-112",
|
| 4 |
-
"epoch": 2.991097922848665,
|
| 5 |
-
"eval_steps": 28,
|
| 6 |
-
"global_step": 336,
|
| 7 |
-
"is_hyper_param_search": false,
|
| 8 |
-
"is_local_process_zero": true,
|
| 9 |
-
"is_world_process_zero": true,
|
| 10 |
-
"log_history": [
|
| 11 |
-
{
|
| 12 |
-
"epoch": 0.01,
|
| 13 |
-
"grad_norm": 4.313233023002325,
|
| 14 |
-
"learning_rate": 1.8181818181818182e-05,
|
| 15 |
-
"loss": 1.9528,
|
| 16 |
-
"step": 1
|
| 17 |
-
},
|
| 18 |
-
{
|
| 19 |
-
"epoch": 0.01,
|
| 20 |
-
"eval_loss": 2.1875686645507812,
|
| 21 |
-
"eval_runtime": 12.8608,
|
| 22 |
-
"eval_samples_per_second": 23.327,
|
| 23 |
-
"eval_steps_per_second": 2.955,
|
| 24 |
-
"step": 1
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"epoch": 0.02,
|
| 28 |
-
"grad_norm": 4.039172290955229,
|
| 29 |
-
"learning_rate": 3.6363636363636364e-05,
|
| 30 |
-
"loss": 1.8358,
|
| 31 |
-
"step": 2
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"epoch": 0.03,
|
| 35 |
-
"grad_norm": 4.504705512003857,
|
| 36 |
-
"learning_rate": 5.4545454545454546e-05,
|
| 37 |
-
"loss": 2.0207,
|
| 38 |
-
"step": 3
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"epoch": 0.04,
|
| 42 |
-
"grad_norm": 4.591862504847867,
|
| 43 |
-
"learning_rate": 7.272727272727273e-05,
|
| 44 |
-
"loss": 1.979,
|
| 45 |
-
"step": 4
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"epoch": 0.04,
|
| 49 |
-
"grad_norm": 3.812893581399005,
|
| 50 |
-
"learning_rate": 9.090909090909092e-05,
|
| 51 |
-
"loss": 1.8356,
|
| 52 |
-
"step": 5
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"epoch": 0.05,
|
| 56 |
-
"grad_norm": 0.42886752872747064,
|
| 57 |
-
"learning_rate": 0.00010909090909090909,
|
| 58 |
-
"loss": 1.6722,
|
| 59 |
-
"step": 6
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"epoch": 0.06,
|
| 63 |
-
"grad_norm": 0.22497294481851865,
|
| 64 |
-
"learning_rate": 0.00012727272727272728,
|
| 65 |
-
"loss": 1.6711,
|
| 66 |
-
"step": 7
|
| 67 |
-
},
|
| 68 |
-
{
|
| 69 |
-
"epoch": 0.07,
|
| 70 |
-
"grad_norm": 0.20955259847301927,
|
| 71 |
-
"learning_rate": 0.00014545454545454546,
|
| 72 |
-
"loss": 1.8546,
|
| 73 |
-
"step": 8
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"epoch": 0.08,
|
| 77 |
-
"grad_norm": 0.2200095325539683,
|
| 78 |
-
"learning_rate": 0.00016363636363636366,
|
| 79 |
-
"loss": 1.7538,
|
| 80 |
-
"step": 9
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"epoch": 0.09,
|
| 84 |
-
"grad_norm": 0.19187339879899318,
|
| 85 |
-
"learning_rate": 0.00018181818181818183,
|
| 86 |
-
"loss": 1.6137,
|
| 87 |
-
"step": 10
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"epoch": 0.1,
|
| 91 |
-
"grad_norm": 0.2113395673717837,
|
| 92 |
-
"learning_rate": 0.0002,
|
| 93 |
-
"loss": 1.5225,
|
| 94 |
-
"step": 11
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"epoch": 0.11,
|
| 98 |
-
"grad_norm": 0.17673768408382828,
|
| 99 |
-
"learning_rate": 0.00019999741592564903,
|
| 100 |
-
"loss": 1.5303,
|
| 101 |
-
"step": 12
|
| 102 |
-
},
|
| 103 |
-
{
|
| 104 |
-
"epoch": 0.12,
|
| 105 |
-
"grad_norm": 0.24120852820548402,
|
| 106 |
-
"learning_rate": 0.00019998966383614488,
|
| 107 |
-
"loss": 1.5089,
|
| 108 |
-
"step": 13
|
| 109 |
-
},
|
| 110 |
-
{
|
| 111 |
-
"epoch": 0.12,
|
| 112 |
-
"grad_norm": 0.3089489160535682,
|
| 113 |
-
"learning_rate": 0.00019997674413212708,
|
| 114 |
-
"loss": 1.4525,
|
| 115 |
-
"step": 14
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"epoch": 0.13,
|
| 119 |
-
"grad_norm": 0.2656143410731927,
|
| 120 |
-
"learning_rate": 0.00019995865748130516,
|
| 121 |
-
"loss": 1.4648,
|
| 122 |
-
"step": 15
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"epoch": 0.14,
|
| 126 |
-
"grad_norm": 3.769410316227205,
|
| 127 |
-
"learning_rate": 0.0001999354048184241,
|
| 128 |
-
"loss": 1.3439,
|
| 129 |
-
"step": 16
|
| 130 |
-
},
|
| 131 |
-
{
|
| 132 |
-
"epoch": 0.15,
|
| 133 |
-
"grad_norm": 0.32102180658823753,
|
| 134 |
-
"learning_rate": 0.00019990698734521613,
|
| 135 |
-
"loss": 1.4644,
|
| 136 |
-
"step": 17
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"epoch": 0.16,
|
| 140 |
-
"grad_norm": 0.22094428128919438,
|
| 141 |
-
"learning_rate": 0.0001998734065303385,
|
| 142 |
-
"loss": 1.1927,
|
| 143 |
-
"step": 18
|
| 144 |
-
},
|
| 145 |
-
{
|
| 146 |
-
"epoch": 0.17,
|
| 147 |
-
"grad_norm": 0.22344487218098863,
|
| 148 |
-
"learning_rate": 0.00019983466410929764,
|
| 149 |
-
"loss": 1.2916,
|
| 150 |
-
"step": 19
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"epoch": 0.18,
|
| 154 |
-
"grad_norm": 0.25036262498479456,
|
| 155 |
-
"learning_rate": 0.0001997907620843595,
|
| 156 |
-
"loss": 1.2982,
|
| 157 |
-
"step": 20
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"epoch": 0.19,
|
| 161 |
-
"grad_norm": 0.22671119151539426,
|
| 162 |
-
"learning_rate": 0.00019974170272444604,
|
| 163 |
-
"loss": 1.2146,
|
| 164 |
-
"step": 21
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"epoch": 0.2,
|
| 168 |
-
"grad_norm": 0.259249080403425,
|
| 169 |
-
"learning_rate": 0.00019968748856501788,
|
| 170 |
-
"loss": 1.2072,
|
| 171 |
-
"step": 22
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"epoch": 0.2,
|
| 175 |
-
"grad_norm": 0.23538477651406017,
|
| 176 |
-
"learning_rate": 0.00019962812240794343,
|
| 177 |
-
"loss": 1.3281,
|
| 178 |
-
"step": 23
|
| 179 |
-
},
|
| 180 |
-
{
|
| 181 |
-
"epoch": 0.21,
|
| 182 |
-
"grad_norm": 0.2659115087625978,
|
| 183 |
-
"learning_rate": 0.000199563607321354,
|
| 184 |
-
"loss": 1.1396,
|
| 185 |
-
"step": 24
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"epoch": 0.22,
|
| 189 |
-
"grad_norm": 0.23617264858854836,
|
| 190 |
-
"learning_rate": 0.0001994939466394851,
|
| 191 |
-
"loss": 1.1389,
|
| 192 |
-
"step": 25
|
| 193 |
-
},
|
| 194 |
-
{
|
| 195 |
-
"epoch": 0.23,
|
| 196 |
-
"grad_norm": 0.20514227454180176,
|
| 197 |
-
"learning_rate": 0.00019941914396250446,
|
| 198 |
-
"loss": 1.249,
|
| 199 |
-
"step": 26
|
| 200 |
-
},
|
| 201 |
-
{
|
| 202 |
-
"epoch": 0.24,
|
| 203 |
-
"grad_norm": 0.19660894225830144,
|
| 204 |
-
"learning_rate": 0.00019933920315632557,
|
| 205 |
-
"loss": 1.1776,
|
| 206 |
-
"step": 27
|
| 207 |
-
},
|
| 208 |
-
{
|
| 209 |
-
"epoch": 0.25,
|
| 210 |
-
"grad_norm": 0.2067663909729571,
|
| 211 |
-
"learning_rate": 0.00019925412835240826,
|
| 212 |
-
"loss": 1.1327,
|
| 213 |
-
"step": 28
|
| 214 |
-
},
|
| 215 |
-
{
|
| 216 |
-
"epoch": 0.25,
|
| 217 |
-
"eval_loss": 1.2991960048675537,
|
| 218 |
-
"eval_runtime": 13.153,
|
| 219 |
-
"eval_samples_per_second": 22.808,
|
| 220 |
-
"eval_steps_per_second": 2.889,
|
| 221 |
-
"step": 28
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"epoch": 0.26,
|
| 225 |
-
"grad_norm": 0.1816588361901526,
|
| 226 |
-
"learning_rate": 0.0001991639239475448,
|
| 227 |
-
"loss": 1.1247,
|
| 228 |
-
"step": 29
|
| 229 |
-
},
|
| 230 |
-
{
|
| 231 |
-
"epoch": 0.27,
|
| 232 |
-
"grad_norm": 0.19626955153633807,
|
| 233 |
-
"learning_rate": 0.00019906859460363307,
|
| 234 |
-
"loss": 1.1212,
|
| 235 |
-
"step": 30
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"epoch": 0.28,
|
| 239 |
-
"grad_norm": 0.21084275590405852,
|
| 240 |
-
"learning_rate": 0.00019896814524743528,
|
| 241 |
-
"loss": 0.9927,
|
| 242 |
-
"step": 31
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"epoch": 0.28,
|
| 246 |
-
"grad_norm": 0.16560054949456768,
|
| 247 |
-
"learning_rate": 0.0001988625810703235,
|
| 248 |
-
"loss": 1.1249,
|
| 249 |
-
"step": 32
|
| 250 |
-
},
|
| 251 |
-
{
|
| 252 |
-
"epoch": 0.29,
|
| 253 |
-
"grad_norm": 0.14950879528294536,
|
| 254 |
-
"learning_rate": 0.0001987519075280114,
|
| 255 |
-
"loss": 1.1401,
|
| 256 |
-
"step": 33
|
| 257 |
-
},
|
| 258 |
-
{
|
| 259 |
-
"epoch": 0.3,
|
| 260 |
-
"grad_norm": 0.1777966882651237,
|
| 261 |
-
"learning_rate": 0.00019863613034027224,
|
| 262 |
-
"loss": 1.0769,
|
| 263 |
-
"step": 34
|
| 264 |
-
},
|
| 265 |
-
{
|
| 266 |
-
"epoch": 0.31,
|
| 267 |
-
"grad_norm": 0.1480537272052743,
|
| 268 |
-
"learning_rate": 0.00019851525549064323,
|
| 269 |
-
"loss": 1.0686,
|
| 270 |
-
"step": 35
|
| 271 |
-
},
|
| 272 |
-
{
|
| 273 |
-
"epoch": 0.32,
|
| 274 |
-
"grad_norm": 0.16911906750319078,
|
| 275 |
-
"learning_rate": 0.00019838928922611632,
|
| 276 |
-
"loss": 1.0253,
|
| 277 |
-
"step": 36
|
| 278 |
-
},
|
| 279 |
-
{
|
| 280 |
-
"epoch": 0.33,
|
| 281 |
-
"grad_norm": 0.15987682972555176,
|
| 282 |
-
"learning_rate": 0.00019825823805681543,
|
| 283 |
-
"loss": 1.0609,
|
| 284 |
-
"step": 37
|
| 285 |
-
},
|
| 286 |
-
{
|
| 287 |
-
"epoch": 0.34,
|
| 288 |
-
"grad_norm": 0.15757332939676763,
|
| 289 |
-
"learning_rate": 0.0001981221087556598,
|
| 290 |
-
"loss": 1.1086,
|
| 291 |
-
"step": 38
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"epoch": 0.35,
|
| 295 |
-
"grad_norm": 0.13201845744757537,
|
| 296 |
-
"learning_rate": 0.00019798090835801418,
|
| 297 |
-
"loss": 1.073,
|
| 298 |
-
"step": 39
|
| 299 |
-
},
|
| 300 |
-
{
|
| 301 |
-
"epoch": 0.36,
|
| 302 |
-
"grad_norm": 0.12544508015984754,
|
| 303 |
-
"learning_rate": 0.00019783464416132506,
|
| 304 |
-
"loss": 1.0633,
|
| 305 |
-
"step": 40
|
| 306 |
-
},
|
| 307 |
-
{
|
| 308 |
-
"epoch": 0.36,
|
| 309 |
-
"grad_norm": 0.14645820383886451,
|
| 310 |
-
"learning_rate": 0.00019768332372474366,
|
| 311 |
-
"loss": 1.0653,
|
| 312 |
-
"step": 41
|
| 313 |
-
},
|
| 314 |
-
{
|
| 315 |
-
"epoch": 0.37,
|
| 316 |
-
"grad_norm": 0.14814101902137117,
|
| 317 |
-
"learning_rate": 0.00019752695486873517,
|
| 318 |
-
"loss": 1.0937,
|
| 319 |
-
"step": 42
|
| 320 |
-
},
|
| 321 |
-
{
|
| 322 |
-
"epoch": 0.38,
|
| 323 |
-
"grad_norm": 0.13888915595055443,
|
| 324 |
-
"learning_rate": 0.00019736554567467452,
|
| 325 |
-
"loss": 1.0462,
|
| 326 |
-
"step": 43
|
| 327 |
-
},
|
| 328 |
-
{
|
| 329 |
-
"epoch": 0.39,
|
| 330 |
-
"grad_norm": 0.13185349806639524,
|
| 331 |
-
"learning_rate": 0.00019719910448442893,
|
| 332 |
-
"loss": 1.2177,
|
| 333 |
-
"step": 44
|
| 334 |
-
},
|
| 335 |
-
{
|
| 336 |
-
"epoch": 0.4,
|
| 337 |
-
"grad_norm": 0.15271046712350847,
|
| 338 |
-
"learning_rate": 0.00019702763989992662,
|
| 339 |
-
"loss": 1.0237,
|
| 340 |
-
"step": 45
|
| 341 |
-
},
|
| 342 |
-
{
|
| 343 |
-
"epoch": 0.41,
|
| 344 |
-
"grad_norm": 0.17053588557430902,
|
| 345 |
-
"learning_rate": 0.00019685116078271223,
|
| 346 |
-
"loss": 1.0038,
|
| 347 |
-
"step": 46
|
| 348 |
-
},
|
| 349 |
-
{
|
| 350 |
-
"epoch": 0.42,
|
| 351 |
-
"grad_norm": 0.15641087356577812,
|
| 352 |
-
"learning_rate": 0.00019666967625348906,
|
| 353 |
-
"loss": 1.0886,
|
| 354 |
-
"step": 47
|
| 355 |
-
},
|
| 356 |
-
{
|
| 357 |
-
"epoch": 0.43,
|
| 358 |
-
"grad_norm": 0.1544028594191567,
|
| 359 |
-
"learning_rate": 0.00019648319569164736,
|
| 360 |
-
"loss": 1.1378,
|
| 361 |
-
"step": 48
|
| 362 |
-
},
|
| 363 |
-
{
|
| 364 |
-
"epoch": 0.44,
|
| 365 |
-
"grad_norm": 0.14794885994140625,
|
| 366 |
-
"learning_rate": 0.00019629172873477995,
|
| 367 |
-
"loss": 1.1495,
|
| 368 |
-
"step": 49
|
| 369 |
-
},
|
| 370 |
-
{
|
| 371 |
-
"epoch": 0.45,
|
| 372 |
-
"grad_norm": 0.1577684884028266,
|
| 373 |
-
"learning_rate": 0.0001960952852781838,
|
| 374 |
-
"loss": 1.0782,
|
| 375 |
-
"step": 50
|
| 376 |
-
},
|
| 377 |
-
{
|
| 378 |
-
"epoch": 0.45,
|
| 379 |
-
"grad_norm": 0.15961044045091288,
|
| 380 |
-
"learning_rate": 0.0001958938754743489,
|
| 381 |
-
"loss": 1.0107,
|
| 382 |
-
"step": 51
|
| 383 |
-
},
|
| 384 |
-
{
|
| 385 |
-
"epoch": 0.46,
|
| 386 |
-
"grad_norm": 0.14486696586022083,
|
| 387 |
-
"learning_rate": 0.0001956875097324334,
|
| 388 |
-
"loss": 1.0494,
|
| 389 |
-
"step": 52
|
| 390 |
-
},
|
| 391 |
-
{
|
| 392 |
-
"epoch": 0.47,
|
| 393 |
-
"grad_norm": 0.14250413725518896,
|
| 394 |
-
"learning_rate": 0.00019547619871772574,
|
| 395 |
-
"loss": 1.039,
|
| 396 |
-
"step": 53
|
| 397 |
-
},
|
| 398 |
-
{
|
| 399 |
-
"epoch": 0.48,
|
| 400 |
-
"grad_norm": 0.1196720279125328,
|
| 401 |
-
"learning_rate": 0.00019525995335109334,
|
| 402 |
-
"loss": 1.0966,
|
| 403 |
-
"step": 54
|
| 404 |
-
},
|
| 405 |
-
{
|
| 406 |
-
"epoch": 0.49,
|
| 407 |
-
"grad_norm": 0.14984795891635327,
|
| 408 |
-
"learning_rate": 0.0001950387848084183,
|
| 409 |
-
"loss": 1.0874,
|
| 410 |
-
"step": 55
|
| 411 |
-
},
|
| 412 |
-
{
|
| 413 |
-
"epoch": 0.5,
|
| 414 |
-
"grad_norm": 0.14891088442480416,
|
| 415 |
-
"learning_rate": 0.00019481270452001987,
|
| 416 |
-
"loss": 1.097,
|
| 417 |
-
"step": 56
|
| 418 |
-
},
|
| 419 |
-
{
|
| 420 |
-
"epoch": 0.5,
|
| 421 |
-
"eval_loss": 1.2264304161071777,
|
| 422 |
-
"eval_runtime": 13.2279,
|
| 423 |
-
"eval_samples_per_second": 22.679,
|
| 424 |
-
"eval_steps_per_second": 2.873,
|
| 425 |
-
"step": 56
|
| 426 |
-
},
|
| 427 |
-
{
|
| 428 |
-
"epoch": 0.51,
|
| 429 |
-
"grad_norm": 0.17814266552244534,
|
| 430 |
-
"learning_rate": 0.00019458172417006347,
|
| 431 |
-
"loss": 1.1372,
|
| 432 |
-
"step": 57
|
| 433 |
-
},
|
| 434 |
-
{
|
| 435 |
-
"epoch": 0.52,
|
| 436 |
-
"grad_norm": 0.16125636132578247,
|
| 437 |
-
"learning_rate": 0.00019434585569595708,
|
| 438 |
-
"loss": 1.0623,
|
| 439 |
-
"step": 58
|
| 440 |
-
},
|
| 441 |
-
{
|
| 442 |
-
"epoch": 0.53,
|
| 443 |
-
"grad_norm": 0.15203437202125702,
|
| 444 |
-
"learning_rate": 0.00019410511128773418,
|
| 445 |
-
"loss": 1.0399,
|
| 446 |
-
"step": 59
|
| 447 |
-
},
|
| 448 |
-
{
|
| 449 |
-
"epoch": 0.53,
|
| 450 |
-
"grad_norm": 0.1677461135605213,
|
| 451 |
-
"learning_rate": 0.0001938595033874238,
|
| 452 |
-
"loss": 1.0884,
|
| 453 |
-
"step": 60
|
| 454 |
-
},
|
| 455 |
-
{
|
| 456 |
-
"epoch": 0.54,
|
| 457 |
-
"grad_norm": 0.13564559875683407,
|
| 458 |
-
"learning_rate": 0.0001936090446884074,
|
| 459 |
-
"loss": 1.0176,
|
| 460 |
-
"step": 61
|
| 461 |
-
},
|
| 462 |
-
{
|
| 463 |
-
"epoch": 0.55,
|
| 464 |
-
"grad_norm": 0.1521886500642157,
|
| 465 |
-
"learning_rate": 0.00019335374813476302,
|
| 466 |
-
"loss": 1.0146,
|
| 467 |
-
"step": 62
|
| 468 |
-
},
|
| 469 |
-
{
|
| 470 |
-
"epoch": 0.56,
|
| 471 |
-
"grad_norm": 0.1410132122625916,
|
| 472 |
-
"learning_rate": 0.00019309362692059617,
|
| 473 |
-
"loss": 1.044,
|
| 474 |
-
"step": 63
|
| 475 |
-
},
|
| 476 |
-
{
|
| 477 |
-
"epoch": 0.57,
|
| 478 |
-
"grad_norm": 0.15237848179385577,
|
| 479 |
-
"learning_rate": 0.00019282869448935798,
|
| 480 |
-
"loss": 1.0354,
|
| 481 |
-
"step": 64
|
| 482 |
-
},
|
| 483 |
-
{
|
| 484 |
-
"epoch": 0.58,
|
| 485 |
-
"grad_norm": 0.13871660988504514,
|
| 486 |
-
"learning_rate": 0.00019255896453315052,
|
| 487 |
-
"loss": 1.0189,
|
| 488 |
-
"step": 65
|
| 489 |
-
},
|
| 490 |
-
{
|
| 491 |
-
"epoch": 0.59,
|
| 492 |
-
"grad_norm": 0.14863047478901453,
|
| 493 |
-
"learning_rate": 0.000192284450992019,
|
| 494 |
-
"loss": 1.0704,
|
| 495 |
-
"step": 66
|
| 496 |
-
},
|
| 497 |
-
{
|
| 498 |
-
"epoch": 0.6,
|
| 499 |
-
"grad_norm": 0.13794806124403974,
|
| 500 |
-
"learning_rate": 0.0001920051680532314,
|
| 501 |
-
"loss": 1.0996,
|
| 502 |
-
"step": 67
|
| 503 |
-
},
|
| 504 |
-
{
|
| 505 |
-
"epoch": 0.61,
|
| 506 |
-
"grad_norm": 0.13030507705779365,
|
| 507 |
-
"learning_rate": 0.00019172113015054532,
|
| 508 |
-
"loss": 1.0015,
|
| 509 |
-
"step": 68
|
| 510 |
-
},
|
| 511 |
-
{
|
| 512 |
-
"epoch": 0.61,
|
| 513 |
-
"grad_norm": 0.15092494718902358,
|
| 514 |
-
"learning_rate": 0.0001914323519634619,
|
| 515 |
-
"loss": 1.0822,
|
| 516 |
-
"step": 69
|
| 517 |
-
},
|
| 518 |
-
{
|
| 519 |
-
"epoch": 0.62,
|
| 520 |
-
"grad_norm": 0.1350212989006066,
|
| 521 |
-
"learning_rate": 0.00019113884841646736,
|
| 522 |
-
"loss": 1.0197,
|
| 523 |
-
"step": 70
|
| 524 |
-
},
|
| 525 |
-
{
|
| 526 |
-
"epoch": 0.63,
|
| 527 |
-
"grad_norm": 0.18991168066586347,
|
| 528 |
-
"learning_rate": 0.00019084063467826137,
|
| 529 |
-
"loss": 1.046,
|
| 530 |
-
"step": 71
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"epoch": 0.64,
|
| 534 |
-
"grad_norm": 0.14884381774710187,
|
| 535 |
-
"learning_rate": 0.00019053772616097337,
|
| 536 |
-
"loss": 1.0346,
|
| 537 |
-
"step": 72
|
| 538 |
-
},
|
| 539 |
-
{
|
| 540 |
-
"epoch": 0.65,
|
| 541 |
-
"grad_norm": 0.15579311209945296,
|
| 542 |
-
"learning_rate": 0.000190230138519366,
|
| 543 |
-
"loss": 1.0505,
|
| 544 |
-
"step": 73
|
| 545 |
-
},
|
| 546 |
-
{
|
| 547 |
-
"epoch": 0.66,
|
| 548 |
-
"grad_norm": 0.16015337150592127,
|
| 549 |
-
"learning_rate": 0.000189917887650026,
|
| 550 |
-
"loss": 1.0504,
|
| 551 |
-
"step": 74
|
| 552 |
-
},
|
| 553 |
-
{
|
| 554 |
-
"epoch": 0.67,
|
| 555 |
-
"grad_norm": 0.1443969321518926,
|
| 556 |
-
"learning_rate": 0.00018960098969054255,
|
| 557 |
-
"loss": 1.0755,
|
| 558 |
-
"step": 75
|
| 559 |
-
},
|
| 560 |
-
{
|
| 561 |
-
"epoch": 0.68,
|
| 562 |
-
"grad_norm": 0.15722162227095848,
|
| 563 |
-
"learning_rate": 0.00018927946101867347,
|
| 564 |
-
"loss": 1.0541,
|
| 565 |
-
"step": 76
|
| 566 |
-
},
|
| 567 |
-
{
|
| 568 |
-
"epoch": 0.69,
|
| 569 |
-
"grad_norm": 0.17009697584926559,
|
| 570 |
-
"learning_rate": 0.0001889533182514986,
|
| 571 |
-
"loss": 1.0231,
|
| 572 |
-
"step": 77
|
| 573 |
-
},
|
| 574 |
-
{
|
| 575 |
-
"epoch": 0.69,
|
| 576 |
-
"grad_norm": 0.1256822726781221,
|
| 577 |
-
"learning_rate": 0.0001886225782445612,
|
| 578 |
-
"loss": 0.8814,
|
| 579 |
-
"step": 78
|
| 580 |
-
},
|
| 581 |
-
{
|
| 582 |
-
"epoch": 0.7,
|
| 583 |
-
"grad_norm": 0.14019958069756655,
|
| 584 |
-
"learning_rate": 0.00018828725809099655,
|
| 585 |
-
"loss": 1.0277,
|
| 586 |
-
"step": 79
|
| 587 |
-
},
|
| 588 |
-
{
|
| 589 |
-
"epoch": 0.71,
|
| 590 |
-
"grad_norm": 0.17159459150063183,
|
| 591 |
-
"learning_rate": 0.0001879473751206489,
|
| 592 |
-
"loss": 0.9495,
|
| 593 |
-
"step": 80
|
| 594 |
-
},
|
| 595 |
-
{
|
| 596 |
-
"epoch": 0.72,
|
| 597 |
-
"grad_norm": 0.146430011834186,
|
| 598 |
-
"learning_rate": 0.00018760294689917553,
|
| 599 |
-
"loss": 1.0598,
|
| 600 |
-
"step": 81
|
| 601 |
-
},
|
| 602 |
-
{
|
| 603 |
-
"epoch": 0.73,
|
| 604 |
-
"grad_norm": 0.16834256802992476,
|
| 605 |
-
"learning_rate": 0.00018725399122713912,
|
| 606 |
-
"loss": 1.0237,
|
| 607 |
-
"step": 82
|
| 608 |
-
},
|
| 609 |
-
{
|
| 610 |
-
"epoch": 0.74,
|
| 611 |
-
"grad_norm": 0.15663699267164208,
|
| 612 |
-
"learning_rate": 0.00018690052613908772,
|
| 613 |
-
"loss": 0.939,
|
| 614 |
-
"step": 83
|
| 615 |
-
},
|
| 616 |
-
{
|
| 617 |
-
"epoch": 0.75,
|
| 618 |
-
"grad_norm": 0.15655985150409854,
|
| 619 |
-
"learning_rate": 0.0001865425699026226,
|
| 620 |
-
"loss": 1.0302,
|
| 621 |
-
"step": 84
|
| 622 |
-
},
|
| 623 |
-
{
|
| 624 |
-
"epoch": 0.75,
|
| 625 |
-
"eval_loss": 1.2143030166625977,
|
| 626 |
-
"eval_runtime": 13.2387,
|
| 627 |
-
"eval_samples_per_second": 22.661,
|
| 628 |
-
"eval_steps_per_second": 2.87,
|
| 629 |
-
"step": 84
|
| 630 |
-
},
|
| 631 |
-
{
|
| 632 |
-
"epoch": 0.76,
|
| 633 |
-
"grad_norm": 0.15273470110260864,
|
| 634 |
-
"learning_rate": 0.00018618014101745442,
|
| 635 |
-
"loss": 1.0127,
|
| 636 |
-
"step": 85
|
| 637 |
-
},
|
| 638 |
-
{
|
| 639 |
-
"epoch": 0.77,
|
| 640 |
-
"grad_norm": 0.1723243680259614,
|
| 641 |
-
"learning_rate": 0.0001858132582144469,
|
| 642 |
-
"loss": 0.9306,
|
| 643 |
-
"step": 86
|
| 644 |
-
},
|
| 645 |
-
{
|
| 646 |
-
"epoch": 0.77,
|
| 647 |
-
"grad_norm": 0.14747098547446996,
|
| 648 |
-
"learning_rate": 0.00018544194045464886,
|
| 649 |
-
"loss": 1.0073,
|
| 650 |
-
"step": 87
|
| 651 |
-
},
|
| 652 |
-
{
|
| 653 |
-
"epoch": 0.78,
|
| 654 |
-
"grad_norm": 0.17208333285514918,
|
| 655 |
-
"learning_rate": 0.00018506620692831428,
|
| 656 |
-
"loss": 1.0328,
|
| 657 |
-
"step": 88
|
| 658 |
-
},
|
| 659 |
-
{
|
| 660 |
-
"epoch": 0.79,
|
| 661 |
-
"grad_norm": 0.14918051024971962,
|
| 662 |
-
"learning_rate": 0.0001846860770539105,
|
| 663 |
-
"loss": 1.0022,
|
| 664 |
-
"step": 89
|
| 665 |
-
},
|
| 666 |
-
{
|
| 667 |
-
"epoch": 0.8,
|
| 668 |
-
"grad_norm": 0.156315164090714,
|
| 669 |
-
"learning_rate": 0.00018430157047711474,
|
| 670 |
-
"loss": 1.0293,
|
| 671 |
-
"step": 90
|
| 672 |
-
},
|
| 673 |
-
{
|
| 674 |
-
"epoch": 0.81,
|
| 675 |
-
"grad_norm": 0.2013424548288477,
|
| 676 |
-
"learning_rate": 0.00018391270706979862,
|
| 677 |
-
"loss": 0.9395,
|
| 678 |
-
"step": 91
|
| 679 |
-
},
|
| 680 |
-
{
|
| 681 |
-
"epoch": 0.82,
|
| 682 |
-
"grad_norm": 0.17909726353002614,
|
| 683 |
-
"learning_rate": 0.00018351950692900126,
|
| 684 |
-
"loss": 0.9756,
|
| 685 |
-
"step": 92
|
| 686 |
-
},
|
| 687 |
-
{
|
| 688 |
-
"epoch": 0.83,
|
| 689 |
-
"grad_norm": 0.16939245158726288,
|
| 690 |
-
"learning_rate": 0.00018312199037589068,
|
| 691 |
-
"loss": 0.9576,
|
| 692 |
-
"step": 93
|
| 693 |
-
},
|
| 694 |
-
{
|
| 695 |
-
"epoch": 0.84,
|
| 696 |
-
"grad_norm": 0.14685720680893694,
|
| 697 |
-
"learning_rate": 0.00018272017795471345,
|
| 698 |
-
"loss": 1.0045,
|
| 699 |
-
"step": 94
|
| 700 |
-
},
|
| 701 |
-
{
|
| 702 |
-
"epoch": 0.85,
|
| 703 |
-
"grad_norm": 0.17464839085505987,
|
| 704 |
-
"learning_rate": 0.000182314090431733,
|
| 705 |
-
"loss": 0.9862,
|
| 706 |
-
"step": 95
|
| 707 |
-
},
|
| 708 |
-
{
|
| 709 |
-
"epoch": 0.85,
|
| 710 |
-
"grad_norm": 0.16060904136932572,
|
| 711 |
-
"learning_rate": 0.00018190374879415632,
|
| 712 |
-
"loss": 1.0022,
|
| 713 |
-
"step": 96
|
| 714 |
-
},
|
| 715 |
-
{
|
| 716 |
-
"epoch": 0.86,
|
| 717 |
-
"grad_norm": 0.18715193350083867,
|
| 718 |
-
"learning_rate": 0.00018148917424904953,
|
| 719 |
-
"loss": 1.042,
|
| 720 |
-
"step": 97
|
| 721 |
-
},
|
| 722 |
-
{
|
| 723 |
-
"epoch": 0.87,
|
| 724 |
-
"grad_norm": 0.1675573400576595,
|
| 725 |
-
"learning_rate": 0.0001810703882222415,
|
| 726 |
-
"loss": 1.0047,
|
| 727 |
-
"step": 98
|
| 728 |
-
},
|
| 729 |
-
{
|
| 730 |
-
"epoch": 0.88,
|
| 731 |
-
"grad_norm": 0.1871466286989249,
|
| 732 |
-
"learning_rate": 0.00018064741235721687,
|
| 733 |
-
"loss": 0.9834,
|
| 734 |
-
"step": 99
|
| 735 |
-
},
|
| 736 |
-
{
|
| 737 |
-
"epoch": 0.89,
|
| 738 |
-
"grad_norm": 0.17453934867565302,
|
| 739 |
-
"learning_rate": 0.00018022026851399737,
|
| 740 |
-
"loss": 0.9649,
|
| 741 |
-
"step": 100
|
| 742 |
-
},
|
| 743 |
-
{
|
| 744 |
-
"epoch": 0.9,
|
| 745 |
-
"grad_norm": 0.15960631507184767,
|
| 746 |
-
"learning_rate": 0.0001797889787680119,
|
| 747 |
-
"loss": 0.9673,
|
| 748 |
-
"step": 101
|
| 749 |
-
},
|
| 750 |
-
{
|
| 751 |
-
"epoch": 0.91,
|
| 752 |
-
"grad_norm": 0.17844936635366368,
|
| 753 |
-
"learning_rate": 0.00017935356540895597,
|
| 754 |
-
"loss": 1.0951,
|
| 755 |
-
"step": 102
|
| 756 |
-
},
|
| 757 |
-
{
|
| 758 |
-
"epoch": 0.92,
|
| 759 |
-
"grad_norm": 0.16733018789000254,
|
| 760 |
-
"learning_rate": 0.00017891405093963938,
|
| 761 |
-
"loss": 0.9954,
|
| 762 |
-
"step": 103
|
| 763 |
-
},
|
| 764 |
-
{
|
| 765 |
-
"epoch": 0.93,
|
| 766 |
-
"grad_norm": 0.17305556075296993,
|
| 767 |
-
"learning_rate": 0.00017847045807482345,
|
| 768 |
-
"loss": 0.892,
|
| 769 |
-
"step": 104
|
| 770 |
-
},
|
| 771 |
-
{
|
| 772 |
-
"epoch": 0.93,
|
| 773 |
-
"grad_norm": 0.17197614099805034,
|
| 774 |
-
"learning_rate": 0.00017802280974004716,
|
| 775 |
-
"loss": 1.0494,
|
| 776 |
-
"step": 105
|
| 777 |
-
},
|
| 778 |
-
{
|
| 779 |
-
"epoch": 0.94,
|
| 780 |
-
"grad_norm": 0.18063836817127235,
|
| 781 |
-
"learning_rate": 0.000177571129070442,
|
| 782 |
-
"loss": 1.0264,
|
| 783 |
-
"step": 106
|
| 784 |
-
},
|
| 785 |
-
{
|
| 786 |
-
"epoch": 0.95,
|
| 787 |
-
"grad_norm": 0.14597707005699143,
|
| 788 |
-
"learning_rate": 0.00017711543940953668,
|
| 789 |
-
"loss": 0.9532,
|
| 790 |
-
"step": 107
|
| 791 |
-
},
|
| 792 |
-
{
|
| 793 |
-
"epoch": 0.96,
|
| 794 |
-
"grad_norm": 0.1422048149465345,
|
| 795 |
-
"learning_rate": 0.00017665576430805053,
|
| 796 |
-
"loss": 0.97,
|
| 797 |
-
"step": 108
|
| 798 |
-
},
|
| 799 |
-
{
|
| 800 |
-
"epoch": 0.97,
|
| 801 |
-
"grad_norm": 0.18313914688655572,
|
| 802 |
-
"learning_rate": 0.0001761921275226763,
|
| 803 |
-
"loss": 0.9282,
|
| 804 |
-
"step": 109
|
| 805 |
-
},
|
| 806 |
-
{
|
| 807 |
-
"epoch": 0.98,
|
| 808 |
-
"grad_norm": 0.200679751171441,
|
| 809 |
-
"learning_rate": 0.00017572455301485249,
|
| 810 |
-
"loss": 1.0,
|
| 811 |
-
"step": 110
|
| 812 |
-
},
|
| 813 |
-
{
|
| 814 |
-
"epoch": 0.99,
|
| 815 |
-
"grad_norm": 0.17700985594898055,
|
| 816 |
-
"learning_rate": 0.00017525306494952498,
|
| 817 |
-
"loss": 1.0165,
|
| 818 |
-
"step": 111
|
| 819 |
-
},
|
| 820 |
-
{
|
| 821 |
-
"epoch": 1.0,
|
| 822 |
-
"grad_norm": 0.19925777202726191,
|
| 823 |
-
"learning_rate": 0.0001747776876938981,
|
| 824 |
-
"loss": 1.0346,
|
| 825 |
-
"step": 112
|
| 826 |
-
},
|
| 827 |
-
{
|
| 828 |
-
"epoch": 1.0,
|
| 829 |
-
"eval_loss": 1.203959345817566,
|
| 830 |
-
"eval_runtime": 13.2547,
|
| 831 |
-
"eval_samples_per_second": 22.634,
|
| 832 |
-
"eval_steps_per_second": 2.867,
|
| 833 |
-
"step": 112
|
| 834 |
-
},
|
| 835 |
-
{
|
| 836 |
-
"epoch": 1.01,
|
| 837 |
-
"grad_norm": 0.1606469603473709,
|
| 838 |
-
"learning_rate": 0.00017429844581617532,
|
| 839 |
-
"loss": 0.9832,
|
| 840 |
-
"step": 113
|
| 841 |
-
},
|
| 842 |
-
{
|
| 843 |
-
"epoch": 1.01,
|
| 844 |
-
"grad_norm": 0.16403912763780054,
|
| 845 |
-
"learning_rate": 0.00017381536408428948,
|
| 846 |
-
"loss": 0.9346,
|
| 847 |
-
"step": 114
|
| 848 |
-
},
|
| 849 |
-
{
|
| 850 |
-
"epoch": 1.02,
|
| 851 |
-
"grad_norm": 0.1936046893744468,
|
| 852 |
-
"learning_rate": 0.00017332846746462288,
|
| 853 |
-
"loss": 0.9382,
|
| 854 |
-
"step": 115
|
| 855 |
-
},
|
| 856 |
-
{
|
| 857 |
-
"epoch": 1.03,
|
| 858 |
-
"grad_norm": 0.14250769247239573,
|
| 859 |
-
"learning_rate": 0.0001728377811207168,
|
| 860 |
-
"loss": 0.8914,
|
| 861 |
-
"step": 116
|
| 862 |
-
},
|
| 863 |
-
{
|
| 864 |
-
"epoch": 1.04,
|
| 865 |
-
"grad_norm": 0.17889563599797687,
|
| 866 |
-
"learning_rate": 0.00017234333041197126,
|
| 867 |
-
"loss": 0.9736,
|
| 868 |
-
"step": 117
|
| 869 |
-
},
|
| 870 |
-
{
|
| 871 |
-
"epoch": 1.05,
|
| 872 |
-
"grad_norm": 0.20288960866045594,
|
| 873 |
-
"learning_rate": 0.00017184514089233405,
|
| 874 |
-
"loss": 0.8477,
|
| 875 |
-
"step": 118
|
| 876 |
-
},
|
| 877 |
-
{
|
| 878 |
-
"epoch": 1.06,
|
| 879 |
-
"grad_norm": 0.20926349930533472,
|
| 880 |
-
"learning_rate": 0.00017134323830898037,
|
| 881 |
-
"loss": 0.9933,
|
| 882 |
-
"step": 119
|
| 883 |
-
},
|
| 884 |
-
{
|
| 885 |
-
"epoch": 1.07,
|
| 886 |
-
"grad_norm": 0.21316934416499642,
|
| 887 |
-
"learning_rate": 0.00017083764860098205,
|
| 888 |
-
"loss": 0.9168,
|
| 889 |
-
"step": 120
|
| 890 |
-
},
|
| 891 |
-
{
|
| 892 |
-
"epoch": 1.08,
|
| 893 |
-
"grad_norm": 0.21654320387312692,
|
| 894 |
-
"learning_rate": 0.0001703283978979671,
|
| 895 |
-
"loss": 0.9584,
|
| 896 |
-
"step": 121
|
| 897 |
-
},
|
| 898 |
-
{
|
| 899 |
-
"epoch": 1.09,
|
| 900 |
-
"grad_norm": 0.23789742308175463,
|
| 901 |
-
"learning_rate": 0.00016981551251876904,
|
| 902 |
-
"loss": 1.0298,
|
| 903 |
-
"step": 122
|
| 904 |
-
},
|
| 905 |
-
{
|
| 906 |
-
"epoch": 1.09,
|
| 907 |
-
"grad_norm": 0.16433271793469648,
|
| 908 |
-
"learning_rate": 0.00016929901897006698,
|
| 909 |
-
"loss": 0.8833,
|
| 910 |
-
"step": 123
|
| 911 |
-
},
|
| 912 |
-
{
|
| 913 |
-
"epoch": 1.1,
|
| 914 |
-
"grad_norm": 0.16908727866207868,
|
| 915 |
-
"learning_rate": 0.0001687789439450156,
|
| 916 |
-
"loss": 1.0675,
|
| 917 |
-
"step": 124
|
| 918 |
-
},
|
| 919 |
-
{
|
| 920 |
-
"epoch": 1.11,
|
| 921 |
-
"grad_norm": 0.1670067931363302,
|
| 922 |
-
"learning_rate": 0.00016825531432186543,
|
| 923 |
-
"loss": 0.9515,
|
| 924 |
-
"step": 125
|
| 925 |
-
},
|
| 926 |
-
{
|
| 927 |
-
"epoch": 1.12,
|
| 928 |
-
"grad_norm": 0.17777465531550865,
|
| 929 |
-
"learning_rate": 0.00016772815716257412,
|
| 930 |
-
"loss": 0.8929,
|
| 931 |
-
"step": 126
|
| 932 |
-
},
|
| 933 |
-
{
|
| 934 |
-
"epoch": 1.13,
|
| 935 |
-
"grad_norm": 0.18442783204919333,
|
| 936 |
-
"learning_rate": 0.00016719749971140754,
|
| 937 |
-
"loss": 0.8388,
|
| 938 |
-
"step": 127
|
| 939 |
-
},
|
| 940 |
-
{
|
| 941 |
-
"epoch": 1.14,
|
| 942 |
-
"grad_norm": 0.19073362304284272,
|
| 943 |
-
"learning_rate": 0.0001666633693935319,
|
| 944 |
-
"loss": 0.9584,
|
| 945 |
-
"step": 128
|
| 946 |
-
},
|
| 947 |
-
{
|
| 948 |
-
"epoch": 1.15,
|
| 949 |
-
"grad_norm": 0.20189563405135308,
|
| 950 |
-
"learning_rate": 0.00016612579381359622,
|
| 951 |
-
"loss": 1.0264,
|
| 952 |
-
"step": 129
|
| 953 |
-
},
|
| 954 |
-
{
|
| 955 |
-
"epoch": 1.16,
|
| 956 |
-
"grad_norm": 0.1694138210313381,
|
| 957 |
-
"learning_rate": 0.00016558480075430594,
|
| 958 |
-
"loss": 0.9592,
|
| 959 |
-
"step": 130
|
| 960 |
-
},
|
| 961 |
-
{
|
| 962 |
-
"epoch": 1.17,
|
| 963 |
-
"grad_norm": 0.19195382946787184,
|
| 964 |
-
"learning_rate": 0.00016504041817498678,
|
| 965 |
-
"loss": 0.974,
|
| 966 |
-
"step": 131
|
| 967 |
-
},
|
| 968 |
-
{
|
| 969 |
-
"epoch": 1.18,
|
| 970 |
-
"grad_norm": 0.20684215619155688,
|
| 971 |
-
"learning_rate": 0.00016449267421013994,
|
| 972 |
-
"loss": 0.8499,
|
| 973 |
-
"step": 132
|
| 974 |
-
},
|
| 975 |
-
{
|
| 976 |
-
"epoch": 1.18,
|
| 977 |
-
"grad_norm": 0.22003490429847744,
|
| 978 |
-
"learning_rate": 0.00016394159716798807,
|
| 979 |
-
"loss": 0.9659,
|
| 980 |
-
"step": 133
|
| 981 |
-
},
|
| 982 |
-
{
|
| 983 |
-
"epoch": 1.19,
|
| 984 |
-
"grad_norm": 0.21977918206745437,
|
| 985 |
-
"learning_rate": 0.00016338721552901212,
|
| 986 |
-
"loss": 0.9213,
|
| 987 |
-
"step": 134
|
| 988 |
-
},
|
| 989 |
-
{
|
| 990 |
-
"epoch": 1.2,
|
| 991 |
-
"grad_norm": 0.2076993903333204,
|
| 992 |
-
"learning_rate": 0.0001628295579444796,
|
| 993 |
-
"loss": 0.8119,
|
| 994 |
-
"step": 135
|
| 995 |
-
},
|
| 996 |
-
{
|
| 997 |
-
"epoch": 1.21,
|
| 998 |
-
"grad_norm": 0.2001771499954729,
|
| 999 |
-
"learning_rate": 0.0001622686532349637,
|
| 1000 |
-
"loss": 0.9183,
|
| 1001 |
-
"step": 136
|
| 1002 |
-
},
|
| 1003 |
-
{
|
| 1004 |
-
"epoch": 1.22,
|
| 1005 |
-
"grad_norm": 0.18671550149366203,
|
| 1006 |
-
"learning_rate": 0.00016170453038885394,
|
| 1007 |
-
"loss": 0.8836,
|
| 1008 |
-
"step": 137
|
| 1009 |
-
},
|
| 1010 |
-
{
|
| 1011 |
-
"epoch": 1.23,
|
| 1012 |
-
"grad_norm": 0.20867427207572573,
|
| 1013 |
-
"learning_rate": 0.0001611372185608578,
|
| 1014 |
-
"loss": 0.9964,
|
| 1015 |
-
"step": 138
|
| 1016 |
-
},
|
| 1017 |
-
{
|
| 1018 |
-
"epoch": 1.24,
|
| 1019 |
-
"grad_norm": 0.20035138443113176,
|
| 1020 |
-
"learning_rate": 0.0001605667470704942,
|
| 1021 |
-
"loss": 0.9209,
|
| 1022 |
-
"step": 139
|
| 1023 |
-
},
|
| 1024 |
-
{
|
| 1025 |
-
"epoch": 1.25,
|
| 1026 |
-
"grad_norm": 0.22696612020505577,
|
| 1027 |
-
"learning_rate": 0.0001599931454005781,
|
| 1028 |
-
"loss": 1.0162,
|
| 1029 |
-
"step": 140
|
| 1030 |
-
},
|
| 1031 |
-
{
|
| 1032 |
-
"epoch": 1.25,
|
| 1033 |
-
"eval_loss": 1.2188584804534912,
|
| 1034 |
-
"eval_runtime": 13.249,
|
| 1035 |
-
"eval_samples_per_second": 22.643,
|
| 1036 |
-
"eval_steps_per_second": 2.868,
|
| 1037 |
-
"step": 140
|
| 1038 |
-
},
|
| 1039 |
-
{
|
| 1040 |
-
"epoch": 1.26,
|
| 1041 |
-
"grad_norm": 0.21554353495018647,
|
| 1042 |
-
"learning_rate": 0.00015941644319569665,
|
| 1043 |
-
"loss": 1.0487,
|
| 1044 |
-
"step": 141
|
| 1045 |
-
},
|
| 1046 |
-
{
|
| 1047 |
-
"epoch": 1.26,
|
| 1048 |
-
"grad_norm": 0.22894492131909072,
|
| 1049 |
-
"learning_rate": 0.00015883667026067745,
|
| 1050 |
-
"loss": 0.9352,
|
| 1051 |
-
"step": 142
|
| 1052 |
-
},
|
| 1053 |
-
{
|
| 1054 |
-
"epoch": 1.27,
|
| 1055 |
-
"grad_norm": 0.19145184577172686,
|
| 1056 |
-
"learning_rate": 0.00015825385655904788,
|
| 1057 |
-
"loss": 0.8878,
|
| 1058 |
-
"step": 143
|
| 1059 |
-
},
|
| 1060 |
-
{
|
| 1061 |
-
"epoch": 1.28,
|
| 1062 |
-
"grad_norm": 0.22544664152936575,
|
| 1063 |
-
"learning_rate": 0.00015766803221148673,
|
| 1064 |
-
"loss": 1.0,
|
| 1065 |
-
"step": 144
|
| 1066 |
-
},
|
| 1067 |
-
{
|
| 1068 |
-
"epoch": 1.29,
|
| 1069 |
-
"grad_norm": 0.26000661355557114,
|
| 1070 |
-
"learning_rate": 0.00015707922749426737,
|
| 1071 |
-
"loss": 0.9339,
|
| 1072 |
-
"step": 145
|
| 1073 |
-
},
|
| 1074 |
-
{
|
| 1075 |
-
"epoch": 1.3,
|
| 1076 |
-
"grad_norm": 0.24433845134512236,
|
| 1077 |
-
"learning_rate": 0.00015648747283769317,
|
| 1078 |
-
"loss": 0.9474,
|
| 1079 |
-
"step": 146
|
| 1080 |
-
},
|
| 1081 |
-
{
|
| 1082 |
-
"epoch": 1.31,
|
| 1083 |
-
"grad_norm": 0.21973931169609887,
|
| 1084 |
-
"learning_rate": 0.00015589279882452476,
|
| 1085 |
-
"loss": 0.9357,
|
| 1086 |
-
"step": 147
|
| 1087 |
-
},
|
| 1088 |
-
{
|
| 1089 |
-
"epoch": 1.32,
|
| 1090 |
-
"grad_norm": 0.23929008733305812,
|
| 1091 |
-
"learning_rate": 0.0001552952361883994,
|
| 1092 |
-
"loss": 0.9985,
|
| 1093 |
-
"step": 148
|
| 1094 |
-
},
|
| 1095 |
-
{
|
| 1096 |
-
"epoch": 1.33,
|
| 1097 |
-
"grad_norm": 0.23431856747573573,
|
| 1098 |
-
"learning_rate": 0.00015469481581224272,
|
| 1099 |
-
"loss": 0.8913,
|
| 1100 |
-
"step": 149
|
| 1101 |
-
},
|
| 1102 |
-
{
|
| 1103 |
-
"epoch": 1.34,
|
| 1104 |
-
"grad_norm": 0.2233543327912565,
|
| 1105 |
-
"learning_rate": 0.00015409156872667258,
|
| 1106 |
-
"loss": 0.9877,
|
| 1107 |
-
"step": 150
|
| 1108 |
-
},
|
| 1109 |
-
{
|
| 1110 |
-
"epoch": 1.34,
|
| 1111 |
-
"grad_norm": 0.21281207674183256,
|
| 1112 |
-
"learning_rate": 0.0001534855261083954,
|
| 1113 |
-
"loss": 0.9071,
|
| 1114 |
-
"step": 151
|
| 1115 |
-
},
|
| 1116 |
-
{
|
| 1117 |
-
"epoch": 1.35,
|
| 1118 |
-
"grad_norm": 0.20314832700152685,
|
| 1119 |
-
"learning_rate": 0.00015287671927859494,
|
| 1120 |
-
"loss": 0.9373,
|
| 1121 |
-
"step": 152
|
| 1122 |
-
},
|
| 1123 |
-
{
|
| 1124 |
-
"epoch": 1.36,
|
| 1125 |
-
"grad_norm": 0.19648565819019825,
|
| 1126 |
-
"learning_rate": 0.00015226517970131343,
|
| 1127 |
-
"loss": 0.9469,
|
| 1128 |
-
"step": 153
|
| 1129 |
-
},
|
| 1130 |
-
{
|
| 1131 |
-
"epoch": 1.37,
|
| 1132 |
-
"grad_norm": 0.2262428264639853,
|
| 1133 |
-
"learning_rate": 0.00015165093898182562,
|
| 1134 |
-
"loss": 1.0066,
|
| 1135 |
-
"step": 154
|
| 1136 |
-
},
|
| 1137 |
-
{
|
| 1138 |
-
"epoch": 1.38,
|
| 1139 |
-
"grad_norm": 0.22253433035020442,
|
| 1140 |
-
"learning_rate": 0.00015103402886500525,
|
| 1141 |
-
"loss": 0.8875,
|
| 1142 |
-
"step": 155
|
| 1143 |
-
},
|
| 1144 |
-
{
|
| 1145 |
-
"epoch": 1.39,
|
| 1146 |
-
"grad_norm": 0.181161648904613,
|
| 1147 |
-
"learning_rate": 0.00015041448123368455,
|
| 1148 |
-
"loss": 0.9004,
|
| 1149 |
-
"step": 156
|
| 1150 |
-
},
|
| 1151 |
-
{
|
| 1152 |
-
"epoch": 1.4,
|
| 1153 |
-
"grad_norm": 0.20968483802367816,
|
| 1154 |
-
"learning_rate": 0.00014979232810700637,
|
| 1155 |
-
"loss": 0.9133,
|
| 1156 |
-
"step": 157
|
| 1157 |
-
},
|
| 1158 |
-
{
|
| 1159 |
-
"epoch": 1.41,
|
| 1160 |
-
"grad_norm": 0.20540509271288435,
|
| 1161 |
-
"learning_rate": 0.0001491676016387694,
|
| 1162 |
-
"loss": 0.8876,
|
| 1163 |
-
"step": 158
|
| 1164 |
-
},
|
| 1165 |
-
{
|
| 1166 |
-
"epoch": 1.42,
|
| 1167 |
-
"grad_norm": 0.18762795731312454,
|
| 1168 |
-
"learning_rate": 0.00014854033411576659,
|
| 1169 |
-
"loss": 0.933,
|
| 1170 |
-
"step": 159
|
| 1171 |
-
},
|
| 1172 |
-
{
|
| 1173 |
-
"epoch": 1.42,
|
| 1174 |
-
"grad_norm": 0.23223345997338857,
|
| 1175 |
-
"learning_rate": 0.00014791055795611624,
|
| 1176 |
-
"loss": 0.9182,
|
| 1177 |
-
"step": 160
|
| 1178 |
-
},
|
| 1179 |
-
{
|
| 1180 |
-
"epoch": 1.43,
|
| 1181 |
-
"grad_norm": 0.21932384461027146,
|
| 1182 |
-
"learning_rate": 0.00014727830570758678,
|
| 1183 |
-
"loss": 0.9514,
|
| 1184 |
-
"step": 161
|
| 1185 |
-
},
|
| 1186 |
-
{
|
| 1187 |
-
"epoch": 1.44,
|
| 1188 |
-
"grad_norm": 0.21819663730951108,
|
| 1189 |
-
"learning_rate": 0.0001466436100459146,
|
| 1190 |
-
"loss": 0.9162,
|
| 1191 |
-
"step": 162
|
| 1192 |
-
},
|
| 1193 |
-
{
|
| 1194 |
-
"epoch": 1.45,
|
| 1195 |
-
"grad_norm": 0.2325813323476676,
|
| 1196 |
-
"learning_rate": 0.00014600650377311522,
|
| 1197 |
-
"loss": 0.9308,
|
| 1198 |
-
"step": 163
|
| 1199 |
-
},
|
| 1200 |
-
{
|
| 1201 |
-
"epoch": 1.46,
|
| 1202 |
-
"grad_norm": 0.2568337182939043,
|
| 1203 |
-
"learning_rate": 0.0001453670198157883,
|
| 1204 |
-
"loss": 0.9995,
|
| 1205 |
-
"step": 164
|
| 1206 |
-
},
|
| 1207 |
-
{
|
| 1208 |
-
"epoch": 1.47,
|
| 1209 |
-
"grad_norm": 0.22578454460723413,
|
| 1210 |
-
"learning_rate": 0.00014472519122341566,
|
| 1211 |
-
"loss": 0.9052,
|
| 1212 |
-
"step": 165
|
| 1213 |
-
},
|
| 1214 |
-
{
|
| 1215 |
-
"epoch": 1.48,
|
| 1216 |
-
"grad_norm": 0.23564258958796755,
|
| 1217 |
-
"learning_rate": 0.00014408105116665336,
|
| 1218 |
-
"loss": 0.9714,
|
| 1219 |
-
"step": 166
|
| 1220 |
-
},
|
| 1221 |
-
{
|
| 1222 |
-
"epoch": 1.49,
|
| 1223 |
-
"grad_norm": 0.24266133562839415,
|
| 1224 |
-
"learning_rate": 0.00014343463293561734,
|
| 1225 |
-
"loss": 0.9219,
|
| 1226 |
-
"step": 167
|
| 1227 |
-
},
|
| 1228 |
-
{
|
| 1229 |
-
"epoch": 1.5,
|
| 1230 |
-
"grad_norm": 0.23472454708184465,
|
| 1231 |
-
"learning_rate": 0.00014278596993816308,
|
| 1232 |
-
"loss": 0.8762,
|
| 1233 |
-
"step": 168
|
| 1234 |
-
},
|
| 1235 |
-
{
|
| 1236 |
-
"epoch": 1.5,
|
| 1237 |
-
"eval_loss": 1.2197421789169312,
|
| 1238 |
-
"eval_runtime": 13.2616,
|
| 1239 |
-
"eval_samples_per_second": 22.622,
|
| 1240 |
-
"eval_steps_per_second": 2.865,
|
| 1241 |
-
"step": 168
|
| 1242 |
-
},
|
| 1243 |
-
{
|
| 1244 |
-
"epoch": 1.5,
|
| 1245 |
-
"grad_norm": 0.23623633375452713,
|
| 1246 |
-
"learning_rate": 0.00014213509569815884,
|
| 1247 |
-
"loss": 0.8809,
|
| 1248 |
-
"step": 169
|
| 1249 |
-
},
|
| 1250 |
-
{
|
| 1251 |
-
"epoch": 1.51,
|
| 1252 |
-
"grad_norm": 0.25344275204523486,
|
| 1253 |
-
"learning_rate": 0.00014148204385375321,
|
| 1254 |
-
"loss": 0.7972,
|
| 1255 |
-
"step": 170
|
| 1256 |
-
},
|
| 1257 |
-
{
|
| 1258 |
-
"epoch": 1.52,
|
| 1259 |
-
"grad_norm": 0.23111396119549557,
|
| 1260 |
-
"learning_rate": 0.0001408268481556366,
|
| 1261 |
-
"loss": 0.8228,
|
| 1262 |
-
"step": 171
|
| 1263 |
-
},
|
| 1264 |
-
{
|
| 1265 |
-
"epoch": 1.53,
|
| 1266 |
-
"grad_norm": 0.2510618369255398,
|
| 1267 |
-
"learning_rate": 0.00014016954246529696,
|
| 1268 |
-
"loss": 0.8849,
|
| 1269 |
-
"step": 172
|
| 1270 |
-
},
|
| 1271 |
-
{
|
| 1272 |
-
"epoch": 1.54,
|
| 1273 |
-
"grad_norm": 0.2764366116622668,
|
| 1274 |
-
"learning_rate": 0.0001395101607532698,
|
| 1275 |
-
"loss": 0.8936,
|
| 1276 |
-
"step": 173
|
| 1277 |
-
},
|
| 1278 |
-
{
|
| 1279 |
-
"epoch": 1.55,
|
| 1280 |
-
"grad_norm": 0.24325811719582827,
|
| 1281 |
-
"learning_rate": 0.00013884873709738257,
|
| 1282 |
-
"loss": 0.8602,
|
| 1283 |
-
"step": 174
|
| 1284 |
-
},
|
| 1285 |
-
{
|
| 1286 |
-
"epoch": 1.56,
|
| 1287 |
-
"grad_norm": 0.213781513838486,
|
| 1288 |
-
"learning_rate": 0.00013818530568099327,
|
| 1289 |
-
"loss": 0.9492,
|
| 1290 |
-
"step": 175
|
| 1291 |
-
},
|
| 1292 |
-
{
|
| 1293 |
-
"epoch": 1.57,
|
| 1294 |
-
"grad_norm": 0.2397396374239057,
|
| 1295 |
-
"learning_rate": 0.00013751990079122412,
|
| 1296 |
-
"loss": 1.0499,
|
| 1297 |
-
"step": 176
|
| 1298 |
-
},
|
| 1299 |
-
{
|
| 1300 |
-
"epoch": 1.58,
|
| 1301 |
-
"grad_norm": 0.21579907170368723,
|
| 1302 |
-
"learning_rate": 0.00013685255681718922,
|
| 1303 |
-
"loss": 0.9438,
|
| 1304 |
-
"step": 177
|
| 1305 |
-
},
|
| 1306 |
-
{
|
| 1307 |
-
"epoch": 1.58,
|
| 1308 |
-
"grad_norm": 0.2359312681928786,
|
| 1309 |
-
"learning_rate": 0.0001361833082482175,
|
| 1310 |
-
"loss": 0.9289,
|
| 1311 |
-
"step": 178
|
| 1312 |
-
},
|
| 1313 |
-
{
|
| 1314 |
-
"epoch": 1.59,
|
| 1315 |
-
"grad_norm": 0.2618189093396496,
|
| 1316 |
-
"learning_rate": 0.0001355121896720703,
|
| 1317 |
-
"loss": 0.981,
|
| 1318 |
-
"step": 179
|
| 1319 |
-
},
|
| 1320 |
-
{
|
| 1321 |
-
"epoch": 1.6,
|
| 1322 |
-
"grad_norm": 0.20876513773174135,
|
| 1323 |
-
"learning_rate": 0.00013483923577315348,
|
| 1324 |
-
"loss": 0.82,
|
| 1325 |
-
"step": 180
|
| 1326 |
-
},
|
| 1327 |
-
{
|
| 1328 |
-
"epoch": 1.61,
|
| 1329 |
-
"grad_norm": 0.22162748553995645,
|
| 1330 |
-
"learning_rate": 0.00013416448133072526,
|
| 1331 |
-
"loss": 1.0131,
|
| 1332 |
-
"step": 181
|
| 1333 |
-
},
|
| 1334 |
-
{
|
| 1335 |
-
"epoch": 1.62,
|
| 1336 |
-
"grad_norm": 0.20975549982451164,
|
| 1337 |
-
"learning_rate": 0.00013348796121709862,
|
| 1338 |
-
"loss": 0.8763,
|
| 1339 |
-
"step": 182
|
| 1340 |
-
},
|
| 1341 |
-
{
|
| 1342 |
-
"epoch": 1.63,
|
| 1343 |
-
"grad_norm": 0.22840397707525473,
|
| 1344 |
-
"learning_rate": 0.00013280971039583906,
|
| 1345 |
-
"loss": 0.949,
|
| 1346 |
-
"step": 183
|
| 1347 |
-
},
|
| 1348 |
-
{
|
| 1349 |
-
"epoch": 1.64,
|
| 1350 |
-
"grad_norm": 0.23384636230161737,
|
| 1351 |
-
"learning_rate": 0.0001321297639199575,
|
| 1352 |
-
"loss": 0.9567,
|
| 1353 |
-
"step": 184
|
| 1354 |
-
},
|
| 1355 |
-
{
|
| 1356 |
-
"epoch": 1.65,
|
| 1357 |
-
"grad_norm": 0.22905979409902957,
|
| 1358 |
-
"learning_rate": 0.000131448156930099,
|
| 1359 |
-
"loss": 0.9153,
|
| 1360 |
-
"step": 185
|
| 1361 |
-
},
|
| 1362 |
-
{
|
| 1363 |
-
"epoch": 1.66,
|
| 1364 |
-
"grad_norm": 0.27620894683694563,
|
| 1365 |
-
"learning_rate": 0.0001307649246527263,
|
| 1366 |
-
"loss": 0.8246,
|
| 1367 |
-
"step": 186
|
| 1368 |
-
},
|
| 1369 |
-
{
|
| 1370 |
-
"epoch": 1.66,
|
| 1371 |
-
"grad_norm": 0.23004170633106227,
|
| 1372 |
-
"learning_rate": 0.0001300801023982995,
|
| 1373 |
-
"loss": 1.0181,
|
| 1374 |
-
"step": 187
|
| 1375 |
-
},
|
| 1376 |
-
{
|
| 1377 |
-
"epoch": 1.67,
|
| 1378 |
-
"grad_norm": 0.2219849136264378,
|
| 1379 |
-
"learning_rate": 0.00012939372555945112,
|
| 1380 |
-
"loss": 0.9535,
|
| 1381 |
-
"step": 188
|
| 1382 |
-
},
|
| 1383 |
-
{
|
| 1384 |
-
"epoch": 1.68,
|
| 1385 |
-
"grad_norm": 0.24458750452490116,
|
| 1386 |
-
"learning_rate": 0.0001287058296091567,
|
| 1387 |
-
"loss": 0.8968,
|
| 1388 |
-
"step": 189
|
| 1389 |
-
},
|
| 1390 |
-
{
|
| 1391 |
-
"epoch": 1.69,
|
| 1392 |
-
"grad_norm": 0.2564337740159555,
|
| 1393 |
-
"learning_rate": 0.00012801645009890195,
|
| 1394 |
-
"loss": 0.7955,
|
| 1395 |
-
"step": 190
|
| 1396 |
-
},
|
| 1397 |
-
{
|
| 1398 |
-
"epoch": 1.7,
|
| 1399 |
-
"grad_norm": 0.24100850371438767,
|
| 1400 |
-
"learning_rate": 0.0001273256226568451,
|
| 1401 |
-
"loss": 0.9235,
|
| 1402 |
-
"step": 191
|
| 1403 |
-
},
|
| 1404 |
-
{
|
| 1405 |
-
"epoch": 1.71,
|
| 1406 |
-
"grad_norm": 0.24757089527873732,
|
| 1407 |
-
"learning_rate": 0.00012663338298597563,
|
| 1408 |
-
"loss": 1.007,
|
| 1409 |
-
"step": 192
|
| 1410 |
-
},
|
| 1411 |
-
{
|
| 1412 |
-
"epoch": 1.72,
|
| 1413 |
-
"grad_norm": 0.24701038583742888,
|
| 1414 |
-
"learning_rate": 0.00012593976686226904,
|
| 1415 |
-
"loss": 0.9885,
|
| 1416 |
-
"step": 193
|
| 1417 |
-
},
|
| 1418 |
-
{
|
| 1419 |
-
"epoch": 1.73,
|
| 1420 |
-
"grad_norm": 0.26373721125634964,
|
| 1421 |
-
"learning_rate": 0.0001252448101328381,
|
| 1422 |
-
"loss": 0.8785,
|
| 1423 |
-
"step": 194
|
| 1424 |
-
},
|
| 1425 |
-
{
|
| 1426 |
-
"epoch": 1.74,
|
| 1427 |
-
"grad_norm": 0.2227761464470136,
|
| 1428 |
-
"learning_rate": 0.00012454854871407994,
|
| 1429 |
-
"loss": 0.8806,
|
| 1430 |
-
"step": 195
|
| 1431 |
-
},
|
| 1432 |
-
{
|
| 1433 |
-
"epoch": 1.74,
|
| 1434 |
-
"grad_norm": 0.2283950634350429,
|
| 1435 |
-
"learning_rate": 0.00012385101858982005,
|
| 1436 |
-
"loss": 0.9053,
|
| 1437 |
-
"step": 196
|
| 1438 |
-
},
|
| 1439 |
-
{
|
| 1440 |
-
"epoch": 1.74,
|
| 1441 |
-
"eval_loss": 1.2198154926300049,
|
| 1442 |
-
"eval_runtime": 13.2208,
|
| 1443 |
-
"eval_samples_per_second": 22.692,
|
| 1444 |
-
"eval_steps_per_second": 2.874,
|
| 1445 |
-
"step": 196
|
| 1446 |
-
},
|
| 1447 |
-
{
|
| 1448 |
-
"epoch": 1.75,
|
| 1449 |
-
"grad_norm": 0.23406423788354982,
|
| 1450 |
-
"learning_rate": 0.00012315225580945252,
|
| 1451 |
-
"loss": 0.9397,
|
| 1452 |
-
"step": 197
|
| 1453 |
-
},
|
| 1454 |
-
{
|
| 1455 |
-
"epoch": 1.76,
|
| 1456 |
-
"grad_norm": 0.23807045727443327,
|
| 1457 |
-
"learning_rate": 0.0001224522964860769,
|
| 1458 |
-
"loss": 0.9712,
|
| 1459 |
-
"step": 198
|
| 1460 |
-
},
|
| 1461 |
-
{
|
| 1462 |
-
"epoch": 1.77,
|
| 1463 |
-
"grad_norm": 0.2463614808838948,
|
| 1464 |
-
"learning_rate": 0.00012175117679463187,
|
| 1465 |
-
"loss": 0.8558,
|
| 1466 |
-
"step": 199
|
| 1467 |
-
},
|
| 1468 |
-
{
|
| 1469 |
-
"epoch": 1.78,
|
| 1470 |
-
"grad_norm": 0.24737417059302014,
|
| 1471 |
-
"learning_rate": 0.00012104893297002567,
|
| 1472 |
-
"loss": 0.9723,
|
| 1473 |
-
"step": 200
|
| 1474 |
-
},
|
| 1475 |
-
{
|
| 1476 |
-
"epoch": 1.79,
|
| 1477 |
-
"grad_norm": 0.243750688050595,
|
| 1478 |
-
"learning_rate": 0.0001203456013052634,
|
| 1479 |
-
"loss": 0.964,
|
| 1480 |
-
"step": 201
|
| 1481 |
-
},
|
| 1482 |
-
{
|
| 1483 |
-
"epoch": 1.8,
|
| 1484 |
-
"grad_norm": 0.24572059557106538,
|
| 1485 |
-
"learning_rate": 0.00011964121814957137,
|
| 1486 |
-
"loss": 0.9109,
|
| 1487 |
-
"step": 202
|
| 1488 |
-
},
|
| 1489 |
-
{
|
| 1490 |
-
"epoch": 1.81,
|
| 1491 |
-
"grad_norm": 0.24044117903962453,
|
| 1492 |
-
"learning_rate": 0.00011893581990651848,
|
| 1493 |
-
"loss": 1.0019,
|
| 1494 |
-
"step": 203
|
| 1495 |
-
},
|
| 1496 |
-
{
|
| 1497 |
-
"epoch": 1.82,
|
| 1498 |
-
"grad_norm": 0.2737568489071465,
|
| 1499 |
-
"learning_rate": 0.00011822944303213486,
|
| 1500 |
-
"loss": 0.8893,
|
| 1501 |
-
"step": 204
|
| 1502 |
-
},
|
| 1503 |
-
{
|
| 1504 |
-
"epoch": 1.82,
|
| 1505 |
-
"grad_norm": 0.24122455882790084,
|
| 1506 |
-
"learning_rate": 0.00011752212403302784,
|
| 1507 |
-
"loss": 0.9162,
|
| 1508 |
-
"step": 205
|
| 1509 |
-
},
|
| 1510 |
-
{
|
| 1511 |
-
"epoch": 1.83,
|
| 1512 |
-
"grad_norm": 0.28991871401626856,
|
| 1513 |
-
"learning_rate": 0.00011681389946449504,
|
| 1514 |
-
"loss": 0.8555,
|
| 1515 |
-
"step": 206
|
| 1516 |
-
},
|
| 1517 |
-
{
|
| 1518 |
-
"epoch": 1.84,
|
| 1519 |
-
"grad_norm": 0.23767408810646548,
|
| 1520 |
-
"learning_rate": 0.00011610480592863531,
|
| 1521 |
-
"loss": 0.9936,
|
| 1522 |
-
"step": 207
|
| 1523 |
-
},
|
| 1524 |
-
{
|
| 1525 |
-
"epoch": 1.85,
|
| 1526 |
-
"grad_norm": 0.22614733706173062,
|
| 1527 |
-
"learning_rate": 0.00011539488007245702,
|
| 1528 |
-
"loss": 0.916,
|
| 1529 |
-
"step": 208
|
| 1530 |
-
},
|
| 1531 |
-
{
|
| 1532 |
-
"epoch": 1.86,
|
| 1533 |
-
"grad_norm": 0.22471992425846515,
|
| 1534 |
-
"learning_rate": 0.00011468415858598411,
|
| 1535 |
-
"loss": 0.8872,
|
| 1536 |
-
"step": 209
|
| 1537 |
-
},
|
| 1538 |
-
{
|
| 1539 |
-
"epoch": 1.87,
|
| 1540 |
-
"grad_norm": 0.22675717145909688,
|
| 1541 |
-
"learning_rate": 0.00011397267820035986,
|
| 1542 |
-
"loss": 0.8393,
|
| 1543 |
-
"step": 210
|
| 1544 |
-
},
|
| 1545 |
-
{
|
| 1546 |
-
"epoch": 1.88,
|
| 1547 |
-
"grad_norm": 0.2727459336483823,
|
| 1548 |
-
"learning_rate": 0.00011326047568594851,
|
| 1549 |
-
"loss": 0.8265,
|
| 1550 |
-
"step": 211
|
| 1551 |
-
},
|
| 1552 |
-
{
|
| 1553 |
-
"epoch": 1.89,
|
| 1554 |
-
"grad_norm": 0.25216778031670767,
|
| 1555 |
-
"learning_rate": 0.00011254758785043515,
|
| 1556 |
-
"loss": 0.9939,
|
| 1557 |
-
"step": 212
|
| 1558 |
-
},
|
| 1559 |
-
{
|
| 1560 |
-
"epoch": 1.9,
|
| 1561 |
-
"grad_norm": 0.269147378424304,
|
| 1562 |
-
"learning_rate": 0.0001118340515369232,
|
| 1563 |
-
"loss": 0.9102,
|
| 1564 |
-
"step": 213
|
| 1565 |
-
},
|
| 1566 |
-
{
|
| 1567 |
-
"epoch": 1.91,
|
| 1568 |
-
"grad_norm": 0.2216178370833471,
|
| 1569 |
-
"learning_rate": 0.00011111990362203033,
|
| 1570 |
-
"loss": 0.8778,
|
| 1571 |
-
"step": 214
|
| 1572 |
-
},
|
| 1573 |
-
{
|
| 1574 |
-
"epoch": 1.91,
|
| 1575 |
-
"grad_norm": 0.2602474934716497,
|
| 1576 |
-
"learning_rate": 0.00011040518101398276,
|
| 1577 |
-
"loss": 0.9454,
|
| 1578 |
-
"step": 215
|
| 1579 |
-
},
|
| 1580 |
-
{
|
| 1581 |
-
"epoch": 1.92,
|
| 1582 |
-
"grad_norm": 0.2658635078442998,
|
| 1583 |
-
"learning_rate": 0.00010968992065070769,
|
| 1584 |
-
"loss": 0.8098,
|
| 1585 |
-
"step": 216
|
| 1586 |
-
},
|
| 1587 |
-
{
|
| 1588 |
-
"epoch": 1.93,
|
| 1589 |
-
"grad_norm": 0.20997905209488962,
|
| 1590 |
-
"learning_rate": 0.00010897415949792427,
|
| 1591 |
-
"loss": 0.9318,
|
| 1592 |
-
"step": 217
|
| 1593 |
-
},
|
| 1594 |
-
{
|
| 1595 |
-
"epoch": 1.94,
|
| 1596 |
-
"grad_norm": 0.24752453752221557,
|
| 1597 |
-
"learning_rate": 0.00010825793454723325,
|
| 1598 |
-
"loss": 0.949,
|
| 1599 |
-
"step": 218
|
| 1600 |
-
},
|
| 1601 |
-
{
|
| 1602 |
-
"epoch": 1.95,
|
| 1603 |
-
"grad_norm": 0.255579569750529,
|
| 1604 |
-
"learning_rate": 0.0001075412828142051,
|
| 1605 |
-
"loss": 0.915,
|
| 1606 |
-
"step": 219
|
| 1607 |
-
},
|
| 1608 |
-
{
|
| 1609 |
-
"epoch": 1.96,
|
| 1610 |
-
"grad_norm": 0.23186981930561867,
|
| 1611 |
-
"learning_rate": 0.0001068242413364671,
|
| 1612 |
-
"loss": 0.9132,
|
| 1613 |
-
"step": 220
|
| 1614 |
-
},
|
| 1615 |
-
{
|
| 1616 |
-
"epoch": 1.97,
|
| 1617 |
-
"grad_norm": 0.35685140391438824,
|
| 1618 |
-
"learning_rate": 0.00010610684717178905,
|
| 1619 |
-
"loss": 0.9398,
|
| 1620 |
-
"step": 221
|
| 1621 |
-
},
|
| 1622 |
-
{
|
| 1623 |
-
"epoch": 1.98,
|
| 1624 |
-
"grad_norm": 0.27320389987223703,
|
| 1625 |
-
"learning_rate": 0.00010538913739616816,
|
| 1626 |
-
"loss": 0.857,
|
| 1627 |
-
"step": 222
|
| 1628 |
-
},
|
| 1629 |
-
{
|
| 1630 |
-
"epoch": 1.99,
|
| 1631 |
-
"grad_norm": 0.2324276771141761,
|
| 1632 |
-
"learning_rate": 0.00010467114910191289,
|
| 1633 |
-
"loss": 0.8546,
|
| 1634 |
-
"step": 223
|
| 1635 |
-
},
|
| 1636 |
-
{
|
| 1637 |
-
"epoch": 1.99,
|
| 1638 |
-
"grad_norm": 0.22820341349854167,
|
| 1639 |
-
"learning_rate": 0.00010395291939572593,
|
| 1640 |
-
"loss": 0.9301,
|
| 1641 |
-
"step": 224
|
| 1642 |
-
},
|
| 1643 |
-
{
|
| 1644 |
-
"epoch": 1.99,
|
| 1645 |
-
"eval_loss": 1.2246263027191162,
|
| 1646 |
-
"eval_runtime": 13.1981,
|
| 1647 |
-
"eval_samples_per_second": 22.731,
|
| 1648 |
-
"eval_steps_per_second": 2.879,
|
| 1649 |
-
"step": 224
|
| 1650 |
-
},
|
| 1651 |
-
{
|
| 1652 |
-
"epoch": 2.0,
|
| 1653 |
-
"grad_norm": 0.2289800489154315,
|
| 1654 |
-
"learning_rate": 0.00010323448539678653,
|
| 1655 |
-
"loss": 0.9922,
|
| 1656 |
-
"step": 225
|
| 1657 |
-
},
|
| 1658 |
-
{
|
| 1659 |
-
"epoch": 2.01,
|
| 1660 |
-
"grad_norm": 0.2673353778680862,
|
| 1661 |
-
"learning_rate": 0.00010251588423483205,
|
| 1662 |
-
"loss": 0.7779,
|
| 1663 |
-
"step": 226
|
| 1664 |
-
},
|
| 1665 |
-
{
|
| 1666 |
-
"epoch": 2.02,
|
| 1667 |
-
"grad_norm": 0.2420933678952559,
|
| 1668 |
-
"learning_rate": 0.0001017971530482392,
|
| 1669 |
-
"loss": 0.8044,
|
| 1670 |
-
"step": 227
|
| 1671 |
-
},
|
| 1672 |
-
{
|
| 1673 |
-
"epoch": 2.03,
|
| 1674 |
-
"grad_norm": 0.21799264660625498,
|
| 1675 |
-
"learning_rate": 0.00010107832898210439,
|
| 1676 |
-
"loss": 0.8773,
|
| 1677 |
-
"step": 228
|
| 1678 |
-
},
|
| 1679 |
-
{
|
| 1680 |
-
"epoch": 2.04,
|
| 1681 |
-
"grad_norm": 0.21443255695871016,
|
| 1682 |
-
"learning_rate": 0.00010035944918632429,
|
| 1683 |
-
"loss": 0.9031,
|
| 1684 |
-
"step": 229
|
| 1685 |
-
},
|
| 1686 |
-
{
|
| 1687 |
-
"epoch": 2.05,
|
| 1688 |
-
"grad_norm": 0.23983734165788242,
|
| 1689 |
-
"learning_rate": 9.96405508136757e-05,
|
| 1690 |
-
"loss": 0.9014,
|
| 1691 |
-
"step": 230
|
| 1692 |
-
},
|
| 1693 |
-
{
|
| 1694 |
-
"epoch": 2.06,
|
| 1695 |
-
"grad_norm": 0.27915481475799336,
|
| 1696 |
-
"learning_rate": 9.892167101789564e-05,
|
| 1697 |
-
"loss": 0.8853,
|
| 1698 |
-
"step": 231
|
| 1699 |
-
},
|
| 1700 |
-
{
|
| 1701 |
-
"epoch": 2.07,
|
| 1702 |
-
"grad_norm": 0.2688949371564916,
|
| 1703 |
-
"learning_rate": 9.820284695176082e-05,
|
| 1704 |
-
"loss": 0.8452,
|
| 1705 |
-
"step": 232
|
| 1706 |
-
},
|
| 1707 |
-
{
|
| 1708 |
-
"epoch": 2.07,
|
| 1709 |
-
"grad_norm": 0.2623278518867105,
|
| 1710 |
-
"learning_rate": 9.748411576516794e-05,
|
| 1711 |
-
"loss": 0.8612,
|
| 1712 |
-
"step": 233
|
| 1713 |
-
},
|
| 1714 |
-
{
|
| 1715 |
-
"epoch": 2.08,
|
| 1716 |
-
"grad_norm": 0.2710502639103885,
|
| 1717 |
-
"learning_rate": 9.676551460321349e-05,
|
| 1718 |
-
"loss": 0.8108,
|
| 1719 |
-
"step": 234
|
| 1720 |
-
},
|
| 1721 |
-
{
|
| 1722 |
-
"epoch": 2.09,
|
| 1723 |
-
"grad_norm": 0.282572880285737,
|
| 1724 |
-
"learning_rate": 9.60470806042741e-05,
|
| 1725 |
-
"loss": 0.7866,
|
| 1726 |
-
"step": 235
|
| 1727 |
-
},
|
| 1728 |
-
{
|
| 1729 |
-
"epoch": 2.1,
|
| 1730 |
-
"grad_norm": 0.2829396962922612,
|
| 1731 |
-
"learning_rate": 9.532885089808713e-05,
|
| 1732 |
-
"loss": 0.8557,
|
| 1733 |
-
"step": 236
|
| 1734 |
-
},
|
| 1735 |
-
{
|
| 1736 |
-
"epoch": 2.11,
|
| 1737 |
-
"grad_norm": 0.2721172338857335,
|
| 1738 |
-
"learning_rate": 9.461086260383187e-05,
|
| 1739 |
-
"loss": 0.7933,
|
| 1740 |
-
"step": 237
|
| 1741 |
-
},
|
| 1742 |
-
{
|
| 1743 |
-
"epoch": 2.12,
|
| 1744 |
-
"grad_norm": 0.29736638811364446,
|
| 1745 |
-
"learning_rate": 9.389315282821097e-05,
|
| 1746 |
-
"loss": 0.7674,
|
| 1747 |
-
"step": 238
|
| 1748 |
-
},
|
| 1749 |
-
{
|
| 1750 |
-
"epoch": 2.13,
|
| 1751 |
-
"grad_norm": 0.28571679920981263,
|
| 1752 |
-
"learning_rate": 9.317575866353292e-05,
|
| 1753 |
-
"loss": 0.7442,
|
| 1754 |
-
"step": 239
|
| 1755 |
-
},
|
| 1756 |
-
{
|
| 1757 |
-
"epoch": 2.14,
|
| 1758 |
-
"grad_norm": 0.264545167150173,
|
| 1759 |
-
"learning_rate": 9.245871718579491e-05,
|
| 1760 |
-
"loss": 0.8505,
|
| 1761 |
-
"step": 240
|
| 1762 |
-
},
|
| 1763 |
-
{
|
| 1764 |
-
"epoch": 2.15,
|
| 1765 |
-
"grad_norm": 0.30691085134027757,
|
| 1766 |
-
"learning_rate": 9.174206545276677e-05,
|
| 1767 |
-
"loss": 0.7898,
|
| 1768 |
-
"step": 241
|
| 1769 |
-
},
|
| 1770 |
-
{
|
| 1771 |
-
"epoch": 2.15,
|
| 1772 |
-
"grad_norm": 0.31375028121981235,
|
| 1773 |
-
"learning_rate": 9.102584050207578e-05,
|
| 1774 |
-
"loss": 0.7661,
|
| 1775 |
-
"step": 242
|
| 1776 |
-
},
|
| 1777 |
-
{
|
| 1778 |
-
"epoch": 2.16,
|
| 1779 |
-
"grad_norm": 0.28421530221837016,
|
| 1780 |
-
"learning_rate": 9.031007934929236e-05,
|
| 1781 |
-
"loss": 0.8328,
|
| 1782 |
-
"step": 243
|
| 1783 |
-
},
|
| 1784 |
-
{
|
| 1785 |
-
"epoch": 2.17,
|
| 1786 |
-
"grad_norm": 0.25601367811173414,
|
| 1787 |
-
"learning_rate": 8.959481898601728e-05,
|
| 1788 |
-
"loss": 0.8281,
|
| 1789 |
-
"step": 244
|
| 1790 |
-
},
|
| 1791 |
-
{
|
| 1792 |
-
"epoch": 2.18,
|
| 1793 |
-
"grad_norm": 0.2983724947729522,
|
| 1794 |
-
"learning_rate": 8.888009637796968e-05,
|
| 1795 |
-
"loss": 0.8567,
|
| 1796 |
-
"step": 245
|
| 1797 |
-
},
|
| 1798 |
-
{
|
| 1799 |
-
"epoch": 2.19,
|
| 1800 |
-
"grad_norm": 0.2545616786933236,
|
| 1801 |
-
"learning_rate": 8.81659484630768e-05,
|
| 1802 |
-
"loss": 0.9151,
|
| 1803 |
-
"step": 246
|
| 1804 |
-
},
|
| 1805 |
-
{
|
| 1806 |
-
"epoch": 2.2,
|
| 1807 |
-
"grad_norm": 0.23873712362647942,
|
| 1808 |
-
"learning_rate": 8.745241214956483e-05,
|
| 1809 |
-
"loss": 0.8818,
|
| 1810 |
-
"step": 247
|
| 1811 |
-
},
|
| 1812 |
-
{
|
| 1813 |
-
"epoch": 2.21,
|
| 1814 |
-
"grad_norm": 0.285331972404065,
|
| 1815 |
-
"learning_rate": 8.673952431405148e-05,
|
| 1816 |
-
"loss": 0.7983,
|
| 1817 |
-
"step": 248
|
| 1818 |
-
},
|
| 1819 |
-
{
|
| 1820 |
-
"epoch": 2.22,
|
| 1821 |
-
"grad_norm": 0.23897707291689843,
|
| 1822 |
-
"learning_rate": 8.602732179964017e-05,
|
| 1823 |
-
"loss": 0.8758,
|
| 1824 |
-
"step": 249
|
| 1825 |
-
},
|
| 1826 |
-
{
|
| 1827 |
-
"epoch": 2.23,
|
| 1828 |
-
"grad_norm": 0.2830966091447457,
|
| 1829 |
-
"learning_rate": 8.531584141401591e-05,
|
| 1830 |
-
"loss": 0.8714,
|
| 1831 |
-
"step": 250
|
| 1832 |
-
},
|
| 1833 |
-
{
|
| 1834 |
-
"epoch": 2.23,
|
| 1835 |
-
"grad_norm": 0.28872599217076506,
|
| 1836 |
-
"learning_rate": 8.4605119927543e-05,
|
| 1837 |
-
"loss": 0.8387,
|
| 1838 |
-
"step": 251
|
| 1839 |
-
},
|
| 1840 |
-
{
|
| 1841 |
-
"epoch": 2.24,
|
| 1842 |
-
"grad_norm": 0.2652236346400331,
|
| 1843 |
-
"learning_rate": 8.38951940713647e-05,
|
| 1844 |
-
"loss": 0.8232,
|
| 1845 |
-
"step": 252
|
| 1846 |
-
},
|
| 1847 |
-
{
|
| 1848 |
-
"epoch": 2.24,
|
| 1849 |
-
"eval_loss": 1.2432794570922852,
|
| 1850 |
-
"eval_runtime": 13.2405,
|
| 1851 |
-
"eval_samples_per_second": 22.658,
|
| 1852 |
-
"eval_steps_per_second": 2.87,
|
| 1853 |
-
"step": 252
|
| 1854 |
-
},
|
| 1855 |
-
{
|
| 1856 |
-
"epoch": 2.25,
|
| 1857 |
-
"grad_norm": 0.299978013524394,
|
| 1858 |
-
"learning_rate": 8.318610053550497e-05,
|
| 1859 |
-
"loss": 0.7321,
|
| 1860 |
-
"step": 253
|
| 1861 |
-
},
|
| 1862 |
-
{
|
| 1863 |
-
"epoch": 2.26,
|
| 1864 |
-
"grad_norm": 0.2740002835117391,
|
| 1865 |
-
"learning_rate": 8.247787596697218e-05,
|
| 1866 |
-
"loss": 0.7605,
|
| 1867 |
-
"step": 254
|
| 1868 |
-
},
|
| 1869 |
-
{
|
| 1870 |
-
"epoch": 2.27,
|
| 1871 |
-
"grad_norm": 0.2848366030132808,
|
| 1872 |
-
"learning_rate": 8.177055696786516e-05,
|
| 1873 |
-
"loss": 0.8485,
|
| 1874 |
-
"step": 255
|
| 1875 |
-
},
|
| 1876 |
-
{
|
| 1877 |
-
"epoch": 2.28,
|
| 1878 |
-
"grad_norm": 0.24847418856075218,
|
| 1879 |
-
"learning_rate": 8.106418009348157e-05,
|
| 1880 |
-
"loss": 0.7557,
|
| 1881 |
-
"step": 256
|
| 1882 |
-
},
|
| 1883 |
-
{
|
| 1884 |
-
"epoch": 2.29,
|
| 1885 |
-
"grad_norm": 0.33515508602624905,
|
| 1886 |
-
"learning_rate": 8.035878185042868e-05,
|
| 1887 |
-
"loss": 0.8015,
|
| 1888 |
-
"step": 257
|
| 1889 |
-
},
|
| 1890 |
-
{
|
| 1891 |
-
"epoch": 2.3,
|
| 1892 |
-
"grad_norm": 0.2905943721096322,
|
| 1893 |
-
"learning_rate": 7.965439869473664e-05,
|
| 1894 |
-
"loss": 0.8457,
|
| 1895 |
-
"step": 258
|
| 1896 |
-
},
|
| 1897 |
-
{
|
| 1898 |
-
"epoch": 2.31,
|
| 1899 |
-
"grad_norm": 0.3140679719552616,
|
| 1900 |
-
"learning_rate": 7.895106702997437e-05,
|
| 1901 |
-
"loss": 0.8559,
|
| 1902 |
-
"step": 259
|
| 1903 |
-
},
|
| 1904 |
-
{
|
| 1905 |
-
"epoch": 2.31,
|
| 1906 |
-
"grad_norm": 0.29745105018138573,
|
| 1907 |
-
"learning_rate": 7.824882320536814e-05,
|
| 1908 |
-
"loss": 0.7453,
|
| 1909 |
-
"step": 260
|
| 1910 |
-
},
|
| 1911 |
-
{
|
| 1912 |
-
"epoch": 2.32,
|
| 1913 |
-
"grad_norm": 0.29818631731197365,
|
| 1914 |
-
"learning_rate": 7.754770351392311e-05,
|
| 1915 |
-
"loss": 0.8354,
|
| 1916 |
-
"step": 261
|
| 1917 |
-
},
|
| 1918 |
-
{
|
| 1919 |
-
"epoch": 2.33,
|
| 1920 |
-
"grad_norm": 0.24721488944366407,
|
| 1921 |
-
"learning_rate": 7.684774419054747e-05,
|
| 1922 |
-
"loss": 0.7755,
|
| 1923 |
-
"step": 262
|
| 1924 |
-
},
|
| 1925 |
-
{
|
| 1926 |
-
"epoch": 2.34,
|
| 1927 |
-
"grad_norm": 0.31210442779019465,
|
| 1928 |
-
"learning_rate": 7.614898141017996e-05,
|
| 1929 |
-
"loss": 0.7208,
|
| 1930 |
-
"step": 263
|
| 1931 |
-
},
|
| 1932 |
-
{
|
| 1933 |
-
"epoch": 2.35,
|
| 1934 |
-
"grad_norm": 0.2873220240109992,
|
| 1935 |
-
"learning_rate": 7.54514512859201e-05,
|
| 1936 |
-
"loss": 0.7548,
|
| 1937 |
-
"step": 264
|
| 1938 |
-
},
|
| 1939 |
-
{
|
| 1940 |
-
"epoch": 2.36,
|
| 1941 |
-
"grad_norm": 0.3006634171776217,
|
| 1942 |
-
"learning_rate": 7.475518986716194e-05,
|
| 1943 |
-
"loss": 0.7566,
|
| 1944 |
-
"step": 265
|
| 1945 |
-
},
|
| 1946 |
-
{
|
| 1947 |
-
"epoch": 2.37,
|
| 1948 |
-
"grad_norm": 0.2799417613336026,
|
| 1949 |
-
"learning_rate": 7.406023313773097e-05,
|
| 1950 |
-
"loss": 0.727,
|
| 1951 |
-
"step": 266
|
| 1952 |
-
},
|
| 1953 |
-
{
|
| 1954 |
-
"epoch": 2.38,
|
| 1955 |
-
"grad_norm": 0.2451761866231664,
|
| 1956 |
-
"learning_rate": 7.336661701402439e-05,
|
| 1957 |
-
"loss": 0.9641,
|
| 1958 |
-
"step": 267
|
| 1959 |
-
},
|
| 1960 |
-
{
|
| 1961 |
-
"epoch": 2.39,
|
| 1962 |
-
"grad_norm": 0.305202611125298,
|
| 1963 |
-
"learning_rate": 7.267437734315492e-05,
|
| 1964 |
-
"loss": 0.7891,
|
| 1965 |
-
"step": 268
|
| 1966 |
-
},
|
| 1967 |
-
{
|
| 1968 |
-
"epoch": 2.39,
|
| 1969 |
-
"grad_norm": 0.29107717848747816,
|
| 1970 |
-
"learning_rate": 7.198354990109805e-05,
|
| 1971 |
-
"loss": 0.9032,
|
| 1972 |
-
"step": 269
|
| 1973 |
-
},
|
| 1974 |
-
{
|
| 1975 |
-
"epoch": 2.4,
|
| 1976 |
-
"grad_norm": 0.2688898665176787,
|
| 1977 |
-
"learning_rate": 7.129417039084333e-05,
|
| 1978 |
-
"loss": 0.8416,
|
| 1979 |
-
"step": 270
|
| 1980 |
-
},
|
| 1981 |
-
{
|
| 1982 |
-
"epoch": 2.41,
|
| 1983 |
-
"grad_norm": 0.2814206029778395,
|
| 1984 |
-
"learning_rate": 7.060627444054893e-05,
|
| 1985 |
-
"loss": 0.8443,
|
| 1986 |
-
"step": 271
|
| 1987 |
-
},
|
| 1988 |
-
{
|
| 1989 |
-
"epoch": 2.42,
|
| 1990 |
-
"grad_norm": 0.2862094867555512,
|
| 1991 |
-
"learning_rate": 6.99198976017005e-05,
|
| 1992 |
-
"loss": 0.8271,
|
| 1993 |
-
"step": 272
|
| 1994 |
-
},
|
| 1995 |
-
{
|
| 1996 |
-
"epoch": 2.43,
|
| 1997 |
-
"grad_norm": 0.3214647340394826,
|
| 1998 |
-
"learning_rate": 6.923507534727373e-05,
|
| 1999 |
-
"loss": 0.7793,
|
| 2000 |
-
"step": 273
|
| 2001 |
-
},
|
| 2002 |
-
{
|
| 2003 |
-
"epoch": 2.44,
|
| 2004 |
-
"grad_norm": 0.3033659714564417,
|
| 2005 |
-
"learning_rate": 6.855184306990106e-05,
|
| 2006 |
-
"loss": 0.7856,
|
| 2007 |
-
"step": 274
|
| 2008 |
-
},
|
| 2009 |
-
{
|
| 2010 |
-
"epoch": 2.45,
|
| 2011 |
-
"grad_norm": 0.3024382342577774,
|
| 2012 |
-
"learning_rate": 6.78702360800425e-05,
|
| 2013 |
-
"loss": 0.8633,
|
| 2014 |
-
"step": 275
|
| 2015 |
-
},
|
| 2016 |
-
{
|
| 2017 |
-
"epoch": 2.46,
|
| 2018 |
-
"grad_norm": 0.25803598196729505,
|
| 2019 |
-
"learning_rate": 6.719028960416098e-05,
|
| 2020 |
-
"loss": 0.8428,
|
| 2021 |
-
"step": 276
|
| 2022 |
-
},
|
| 2023 |
-
{
|
| 2024 |
-
"epoch": 2.47,
|
| 2025 |
-
"grad_norm": 0.35469202971401803,
|
| 2026 |
-
"learning_rate": 6.651203878290139e-05,
|
| 2027 |
-
"loss": 0.8665,
|
| 2028 |
-
"step": 277
|
| 2029 |
-
},
|
| 2030 |
-
{
|
| 2031 |
-
"epoch": 2.47,
|
| 2032 |
-
"grad_norm": 0.3122516837597691,
|
| 2033 |
-
"learning_rate": 6.583551866927475e-05,
|
| 2034 |
-
"loss": 0.8787,
|
| 2035 |
-
"step": 278
|
| 2036 |
-
},
|
| 2037 |
-
{
|
| 2038 |
-
"epoch": 2.48,
|
| 2039 |
-
"grad_norm": 0.3305470786367901,
|
| 2040 |
-
"learning_rate": 6.516076422684654e-05,
|
| 2041 |
-
"loss": 0.8765,
|
| 2042 |
-
"step": 279
|
| 2043 |
-
},
|
| 2044 |
-
{
|
| 2045 |
-
"epoch": 2.49,
|
| 2046 |
-
"grad_norm": 0.3324622666488467,
|
| 2047 |
-
"learning_rate": 6.448781032792972e-05,
|
| 2048 |
-
"loss": 0.8318,
|
| 2049 |
-
"step": 280
|
| 2050 |
-
},
|
| 2051 |
-
{
|
| 2052 |
-
"epoch": 2.49,
|
| 2053 |
-
"eval_loss": 1.2546111345291138,
|
| 2054 |
-
"eval_runtime": 13.2379,
|
| 2055 |
-
"eval_samples_per_second": 22.662,
|
| 2056 |
-
"eval_steps_per_second": 2.871,
|
| 2057 |
-
"step": 280
|
| 2058 |
-
},
|
| 2059 |
-
{
|
| 2060 |
-
"epoch": 2.5,
|
| 2061 |
-
"grad_norm": 0.342341713579355,
|
| 2062 |
-
"learning_rate": 6.381669175178248e-05,
|
| 2063 |
-
"loss": 0.9517,
|
| 2064 |
-
"step": 281
|
| 2065 |
-
},
|
| 2066 |
-
{
|
| 2067 |
-
"epoch": 2.51,
|
| 2068 |
-
"grad_norm": 0.33913458352374665,
|
| 2069 |
-
"learning_rate": 6.31474431828108e-05,
|
| 2070 |
-
"loss": 0.8564,
|
| 2071 |
-
"step": 282
|
| 2072 |
-
},
|
| 2073 |
-
{
|
| 2074 |
-
"epoch": 2.52,
|
| 2075 |
-
"grad_norm": 0.30528689383480295,
|
| 2076 |
-
"learning_rate": 6.248009920877592e-05,
|
| 2077 |
-
"loss": 0.8199,
|
| 2078 |
-
"step": 283
|
| 2079 |
-
},
|
| 2080 |
-
{
|
| 2081 |
-
"epoch": 2.53,
|
| 2082 |
-
"grad_norm": 0.29698648367254743,
|
| 2083 |
-
"learning_rate": 6.181469431900672e-05,
|
| 2084 |
-
"loss": 0.785,
|
| 2085 |
-
"step": 284
|
| 2086 |
-
},
|
| 2087 |
-
{
|
| 2088 |
-
"epoch": 2.54,
|
| 2089 |
-
"grad_norm": 0.32239262939282626,
|
| 2090 |
-
"learning_rate": 6.115126290261745e-05,
|
| 2091 |
-
"loss": 0.7794,
|
| 2092 |
-
"step": 285
|
| 2093 |
-
},
|
| 2094 |
-
{
|
| 2095 |
-
"epoch": 2.55,
|
| 2096 |
-
"grad_norm": 0.2694595905080167,
|
| 2097 |
-
"learning_rate": 6.048983924673022e-05,
|
| 2098 |
-
"loss": 0.8056,
|
| 2099 |
-
"step": 286
|
| 2100 |
-
},
|
| 2101 |
-
{
|
| 2102 |
-
"epoch": 2.55,
|
| 2103 |
-
"grad_norm": 0.3045496751154443,
|
| 2104 |
-
"learning_rate": 5.983045753470308e-05,
|
| 2105 |
-
"loss": 0.8164,
|
| 2106 |
-
"step": 287
|
| 2107 |
-
},
|
| 2108 |
-
{
|
| 2109 |
-
"epoch": 2.56,
|
| 2110 |
-
"grad_norm": 0.2927868214627918,
|
| 2111 |
-
"learning_rate": 5.917315184436345e-05,
|
| 2112 |
-
"loss": 0.8358,
|
| 2113 |
-
"step": 288
|
| 2114 |
-
},
|
| 2115 |
-
{
|
| 2116 |
-
"epoch": 2.57,
|
| 2117 |
-
"grad_norm": 0.2931914055644858,
|
| 2118 |
-
"learning_rate": 5.851795614624682e-05,
|
| 2119 |
-
"loss": 0.8011,
|
| 2120 |
-
"step": 289
|
| 2121 |
-
},
|
| 2122 |
-
{
|
| 2123 |
-
"epoch": 2.58,
|
| 2124 |
-
"grad_norm": 0.3158716819379082,
|
| 2125 |
-
"learning_rate": 5.786490430184115e-05,
|
| 2126 |
-
"loss": 0.8332,
|
| 2127 |
-
"step": 290
|
| 2128 |
-
},
|
| 2129 |
-
{
|
| 2130 |
-
"epoch": 2.59,
|
| 2131 |
-
"grad_norm": 0.3482519147352008,
|
| 2132 |
-
"learning_rate": 5.72140300618369e-05,
|
| 2133 |
-
"loss": 0.7621,
|
| 2134 |
-
"step": 291
|
| 2135 |
-
},
|
| 2136 |
-
{
|
| 2137 |
-
"epoch": 2.6,
|
| 2138 |
-
"grad_norm": 0.28652801822050894,
|
| 2139 |
-
"learning_rate": 5.656536706438267e-05,
|
| 2140 |
-
"loss": 0.77,
|
| 2141 |
-
"step": 292
|
| 2142 |
-
},
|
| 2143 |
-
{
|
| 2144 |
-
"epoch": 2.61,
|
| 2145 |
-
"grad_norm": 0.29691290613407717,
|
| 2146 |
-
"learning_rate": 5.591894883334667e-05,
|
| 2147 |
-
"loss": 0.9394,
|
| 2148 |
-
"step": 293
|
| 2149 |
-
},
|
| 2150 |
-
{
|
| 2151 |
-
"epoch": 2.62,
|
| 2152 |
-
"grad_norm": 0.26699581966985203,
|
| 2153 |
-
"learning_rate": 5.5274808776584367e-05,
|
| 2154 |
-
"loss": 0.7918,
|
| 2155 |
-
"step": 294
|
| 2156 |
-
},
|
| 2157 |
-
{
|
| 2158 |
-
"epoch": 2.63,
|
| 2159 |
-
"grad_norm": 0.2926923719762685,
|
| 2160 |
-
"learning_rate": 5.463298018421171e-05,
|
| 2161 |
-
"loss": 0.8723,
|
| 2162 |
-
"step": 295
|
| 2163 |
-
},
|
| 2164 |
-
{
|
| 2165 |
-
"epoch": 2.64,
|
| 2166 |
-
"grad_norm": 0.3403087263187063,
|
| 2167 |
-
"learning_rate": 5.399349622688479e-05,
|
| 2168 |
-
"loss": 0.8097,
|
| 2169 |
-
"step": 296
|
| 2170 |
-
},
|
| 2171 |
-
{
|
| 2172 |
-
"epoch": 2.64,
|
| 2173 |
-
"grad_norm": 0.34261233464532476,
|
| 2174 |
-
"learning_rate": 5.335638995408545e-05,
|
| 2175 |
-
"loss": 0.9032,
|
| 2176 |
-
"step": 297
|
| 2177 |
-
},
|
| 2178 |
-
{
|
| 2179 |
-
"epoch": 2.65,
|
| 2180 |
-
"grad_norm": 0.31315234759634086,
|
| 2181 |
-
"learning_rate": 5.272169429241325e-05,
|
| 2182 |
-
"loss": 0.82,
|
| 2183 |
-
"step": 298
|
| 2184 |
-
},
|
| 2185 |
-
{
|
| 2186 |
-
"epoch": 2.66,
|
| 2187 |
-
"grad_norm": 0.3179759425444047,
|
| 2188 |
-
"learning_rate": 5.208944204388377e-05,
|
| 2189 |
-
"loss": 0.8864,
|
| 2190 |
-
"step": 299
|
| 2191 |
-
},
|
| 2192 |
-
{
|
| 2193 |
-
"epoch": 2.67,
|
| 2194 |
-
"grad_norm": 0.3121296356843828,
|
| 2195 |
-
"learning_rate": 5.145966588423341e-05,
|
| 2196 |
-
"loss": 0.8258,
|
| 2197 |
-
"step": 300
|
| 2198 |
-
},
|
| 2199 |
-
{
|
| 2200 |
-
"epoch": 2.68,
|
| 2201 |
-
"grad_norm": 0.268436849924173,
|
| 2202 |
-
"learning_rate": 5.0832398361230596e-05,
|
| 2203 |
-
"loss": 0.8906,
|
| 2204 |
-
"step": 301
|
| 2205 |
-
},
|
| 2206 |
-
{
|
| 2207 |
-
"epoch": 2.69,
|
| 2208 |
-
"grad_norm": 0.2961161602467319,
|
| 2209 |
-
"learning_rate": 5.020767189299369e-05,
|
| 2210 |
-
"loss": 0.8828,
|
| 2211 |
-
"step": 302
|
| 2212 |
-
},
|
| 2213 |
-
{
|
| 2214 |
-
"epoch": 2.7,
|
| 2215 |
-
"grad_norm": 0.27743957099992345,
|
| 2216 |
-
"learning_rate": 4.9585518766315496e-05,
|
| 2217 |
-
"loss": 0.8251,
|
| 2218 |
-
"step": 303
|
| 2219 |
-
},
|
| 2220 |
-
{
|
| 2221 |
-
"epoch": 2.71,
|
| 2222 |
-
"grad_norm": 0.2949909861852426,
|
| 2223 |
-
"learning_rate": 4.896597113499479e-05,
|
| 2224 |
-
"loss": 0.7911,
|
| 2225 |
-
"step": 304
|
| 2226 |
-
},
|
| 2227 |
-
{
|
| 2228 |
-
"epoch": 2.72,
|
| 2229 |
-
"grad_norm": 0.3161115451278363,
|
| 2230 |
-
"learning_rate": 4.834906101817438e-05,
|
| 2231 |
-
"loss": 0.8157,
|
| 2232 |
-
"step": 305
|
| 2233 |
-
},
|
| 2234 |
-
{
|
| 2235 |
-
"epoch": 2.72,
|
| 2236 |
-
"grad_norm": 0.28720077046065867,
|
| 2237 |
-
"learning_rate": 4.773482029868657e-05,
|
| 2238 |
-
"loss": 0.82,
|
| 2239 |
-
"step": 306
|
| 2240 |
-
},
|
| 2241 |
-
{
|
| 2242 |
-
"epoch": 2.73,
|
| 2243 |
-
"grad_norm": 0.4045319357608716,
|
| 2244 |
-
"learning_rate": 4.712328072140505e-05,
|
| 2245 |
-
"loss": 0.8414,
|
| 2246 |
-
"step": 307
|
| 2247 |
-
},
|
| 2248 |
-
{
|
| 2249 |
-
"epoch": 2.74,
|
| 2250 |
-
"grad_norm": 0.3070232288390269,
|
| 2251 |
-
"learning_rate": 4.651447389160458e-05,
|
| 2252 |
-
"loss": 0.8427,
|
| 2253 |
-
"step": 308
|
| 2254 |
-
},
|
| 2255 |
-
{
|
| 2256 |
-
"epoch": 2.74,
|
| 2257 |
-
"eval_loss": 1.2574400901794434,
|
| 2258 |
-
"eval_runtime": 13.2473,
|
| 2259 |
-
"eval_samples_per_second": 22.646,
|
| 2260 |
-
"eval_steps_per_second": 2.869,
|
| 2261 |
-
"step": 308
|
| 2262 |
-
},
|
| 2263 |
-
{
|
| 2264 |
-
"epoch": 2.75,
|
| 2265 |
-
"grad_norm": 0.3214782806968351,
|
| 2266 |
-
"learning_rate": 4.5908431273327436e-05,
|
| 2267 |
-
"loss": 0.8469,
|
| 2268 |
-
"step": 309
|
| 2269 |
-
},
|
| 2270 |
-
{
|
| 2271 |
-
"epoch": 2.76,
|
| 2272 |
-
"grad_norm": 0.24241410698156174,
|
| 2273 |
-
"learning_rate": 4.530518418775733e-05,
|
| 2274 |
-
"loss": 0.8346,
|
| 2275 |
-
"step": 310
|
| 2276 |
-
},
|
| 2277 |
-
{
|
| 2278 |
-
"epoch": 2.77,
|
| 2279 |
-
"grad_norm": 0.3303263594210879,
|
| 2280 |
-
"learning_rate": 4.470476381160065e-05,
|
| 2281 |
-
"loss": 0.8298,
|
| 2282 |
-
"step": 311
|
| 2283 |
-
},
|
| 2284 |
-
{
|
| 2285 |
-
"epoch": 2.78,
|
| 2286 |
-
"grad_norm": 0.30711900849760865,
|
| 2287 |
-
"learning_rate": 4.4107201175475275e-05,
|
| 2288 |
-
"loss": 0.789,
|
| 2289 |
-
"step": 312
|
| 2290 |
-
},
|
| 2291 |
-
{
|
| 2292 |
-
"epoch": 2.79,
|
| 2293 |
-
"grad_norm": 0.2954465859389713,
|
| 2294 |
-
"learning_rate": 4.351252716230685e-05,
|
| 2295 |
-
"loss": 0.8029,
|
| 2296 |
-
"step": 313
|
| 2297 |
-
},
|
| 2298 |
-
{
|
| 2299 |
-
"epoch": 2.8,
|
| 2300 |
-
"grad_norm": 0.29925087091531116,
|
| 2301 |
-
"learning_rate": 4.292077250573266e-05,
|
| 2302 |
-
"loss": 0.8633,
|
| 2303 |
-
"step": 314
|
| 2304 |
-
},
|
| 2305 |
-
{
|
| 2306 |
-
"epoch": 2.8,
|
| 2307 |
-
"grad_norm": 0.3177611223775825,
|
| 2308 |
-
"learning_rate": 4.2331967788513295e-05,
|
| 2309 |
-
"loss": 0.76,
|
| 2310 |
-
"step": 315
|
| 2311 |
-
},
|
| 2312 |
-
{
|
| 2313 |
-
"epoch": 2.81,
|
| 2314 |
-
"grad_norm": 0.28642407848269513,
|
| 2315 |
-
"learning_rate": 4.174614344095213e-05,
|
| 2316 |
-
"loss": 0.823,
|
| 2317 |
-
"step": 316
|
| 2318 |
-
},
|
| 2319 |
-
{
|
| 2320 |
-
"epoch": 2.82,
|
| 2321 |
-
"grad_norm": 0.3243224656005062,
|
| 2322 |
-
"learning_rate": 4.116332973932256e-05,
|
| 2323 |
-
"loss": 0.7831,
|
| 2324 |
-
"step": 317
|
| 2325 |
-
},
|
| 2326 |
-
{
|
| 2327 |
-
"epoch": 2.83,
|
| 2328 |
-
"grad_norm": 0.34877334027822726,
|
| 2329 |
-
"learning_rate": 4.058355680430337e-05,
|
| 2330 |
-
"loss": 0.899,
|
| 2331 |
-
"step": 318
|
| 2332 |
-
},
|
| 2333 |
-
{
|
| 2334 |
-
"epoch": 2.84,
|
| 2335 |
-
"grad_norm": 0.28640325479143114,
|
| 2336 |
-
"learning_rate": 4.0006854599421926e-05,
|
| 2337 |
-
"loss": 0.8292,
|
| 2338 |
-
"step": 319
|
| 2339 |
-
},
|
| 2340 |
-
{
|
| 2341 |
-
"epoch": 2.85,
|
| 2342 |
-
"grad_norm": 0.3135316628014535,
|
| 2343 |
-
"learning_rate": 3.943325292950579e-05,
|
| 2344 |
-
"loss": 0.8731,
|
| 2345 |
-
"step": 320
|
| 2346 |
-
},
|
| 2347 |
-
{
|
| 2348 |
-
"epoch": 2.86,
|
| 2349 |
-
"grad_norm": 0.2949970604257085,
|
| 2350 |
-
"learning_rate": 3.886278143914219e-05,
|
| 2351 |
-
"loss": 0.8402,
|
| 2352 |
-
"step": 321
|
| 2353 |
-
},
|
| 2354 |
-
{
|
| 2355 |
-
"epoch": 2.87,
|
| 2356 |
-
"grad_norm": 0.30057896586780075,
|
| 2357 |
-
"learning_rate": 3.829546961114607e-05,
|
| 2358 |
-
"loss": 0.7713,
|
| 2359 |
-
"step": 322
|
| 2360 |
-
},
|
| 2361 |
-
{
|
| 2362 |
-
"epoch": 2.88,
|
| 2363 |
-
"grad_norm": 0.3558574270285126,
|
| 2364 |
-
"learning_rate": 3.773134676503629e-05,
|
| 2365 |
-
"loss": 0.8435,
|
| 2366 |
-
"step": 323
|
| 2367 |
-
},
|
| 2368 |
-
{
|
| 2369 |
-
"epoch": 2.88,
|
| 2370 |
-
"grad_norm": 0.29115288332943334,
|
| 2371 |
-
"learning_rate": 3.7170442055520415e-05,
|
| 2372 |
-
"loss": 0.9022,
|
| 2373 |
-
"step": 324
|
| 2374 |
-
},
|
| 2375 |
-
{
|
| 2376 |
-
"epoch": 2.89,
|
| 2377 |
-
"grad_norm": 0.3192074718527619,
|
| 2378 |
-
"learning_rate": 3.661278447098789e-05,
|
| 2379 |
-
"loss": 0.7662,
|
| 2380 |
-
"step": 325
|
| 2381 |
-
},
|
| 2382 |
-
{
|
| 2383 |
-
"epoch": 2.9,
|
| 2384 |
-
"grad_norm": 0.33335742888185405,
|
| 2385 |
-
"learning_rate": 3.605840283201195e-05,
|
| 2386 |
-
"loss": 0.8111,
|
| 2387 |
-
"step": 326
|
| 2388 |
-
},
|
| 2389 |
-
{
|
| 2390 |
-
"epoch": 2.91,
|
| 2391 |
-
"grad_norm": 0.29748212071395186,
|
| 2392 |
-
"learning_rate": 3.550732578986006e-05,
|
| 2393 |
-
"loss": 0.7543,
|
| 2394 |
-
"step": 327
|
| 2395 |
-
},
|
| 2396 |
-
{
|
| 2397 |
-
"epoch": 2.92,
|
| 2398 |
-
"grad_norm": 0.3680409192627914,
|
| 2399 |
-
"learning_rate": 3.495958182501325e-05,
|
| 2400 |
-
"loss": 0.8124,
|
| 2401 |
-
"step": 328
|
| 2402 |
-
},
|
| 2403 |
-
{
|
| 2404 |
-
"epoch": 2.93,
|
| 2405 |
-
"grad_norm": 0.27807302364345643,
|
| 2406 |
-
"learning_rate": 3.441519924569408e-05,
|
| 2407 |
-
"loss": 0.7856,
|
| 2408 |
-
"step": 329
|
| 2409 |
-
},
|
| 2410 |
-
{
|
| 2411 |
-
"epoch": 2.94,
|
| 2412 |
-
"grad_norm": 0.3050855823733691,
|
| 2413 |
-
"learning_rate": 3.387420618640379e-05,
|
| 2414 |
-
"loss": 0.8506,
|
| 2415 |
-
"step": 330
|
| 2416 |
-
},
|
| 2417 |
-
{
|
| 2418 |
-
"epoch": 2.95,
|
| 2419 |
-
"grad_norm": 0.3322620263029238,
|
| 2420 |
-
"learning_rate": 3.3336630606468134e-05,
|
| 2421 |
-
"loss": 0.8771,
|
| 2422 |
-
"step": 331
|
| 2423 |
-
},
|
| 2424 |
-
{
|
| 2425 |
-
"epoch": 2.96,
|
| 2426 |
-
"grad_norm": 0.3112008867427982,
|
| 2427 |
-
"learning_rate": 3.280250028859248e-05,
|
| 2428 |
-
"loss": 0.7785,
|
| 2429 |
-
"step": 332
|
| 2430 |
-
},
|
| 2431 |
-
{
|
| 2432 |
-
"epoch": 2.96,
|
| 2433 |
-
"grad_norm": 0.2839548329095365,
|
| 2434 |
-
"learning_rate": 3.227184283742591e-05,
|
| 2435 |
-
"loss": 0.9153,
|
| 2436 |
-
"step": 333
|
| 2437 |
-
},
|
| 2438 |
-
{
|
| 2439 |
-
"epoch": 2.97,
|
| 2440 |
-
"grad_norm": 0.34615397822650606,
|
| 2441 |
-
"learning_rate": 3.174468567813461e-05,
|
| 2442 |
-
"loss": 0.7753,
|
| 2443 |
-
"step": 334
|
| 2444 |
-
},
|
| 2445 |
-
{
|
| 2446 |
-
"epoch": 2.98,
|
| 2447 |
-
"grad_norm": 0.34691866307772695,
|
| 2448 |
-
"learning_rate": 3.122105605498442e-05,
|
| 2449 |
-
"loss": 0.851,
|
| 2450 |
-
"step": 335
|
| 2451 |
-
},
|
| 2452 |
-
{
|
| 2453 |
-
"epoch": 2.99,
|
| 2454 |
-
"grad_norm": 0.296369624391198,
|
| 2455 |
-
"learning_rate": 3.070098102993302e-05,
|
| 2456 |
-
"loss": 0.8572,
|
| 2457 |
-
"step": 336
|
| 2458 |
-
},
|
| 2459 |
-
{
|
| 2460 |
-
"epoch": 2.99,
|
| 2461 |
-
"eval_loss": 1.2511259317398071,
|
| 2462 |
-
"eval_runtime": 13.2202,
|
| 2463 |
-
"eval_samples_per_second": 22.692,
|
| 2464 |
-
"eval_steps_per_second": 2.874,
|
| 2465 |
-
"step": 336
|
| 2466 |
-
}
|
| 2467 |
-
],
|
| 2468 |
-
"logging_steps": 1,
|
| 2469 |
-
"max_steps": 448,
|
| 2470 |
-
"num_input_tokens_seen": 0,
|
| 2471 |
-
"num_train_epochs": 4,
|
| 2472 |
-
"save_steps": 112,
|
| 2473 |
-
"total_flos": 4.005448726012232e+17,
|
| 2474 |
-
"train_batch_size": 2,
|
| 2475 |
-
"trial_name": null,
|
| 2476 |
-
"trial_params": null
|
| 2477 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d400c16f982c36b10268ff7e69e878c44d11f5fb692a61770a8e1efb50d4491c
|
| 3 |
-
size 6776
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,592 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
-
# Copyright (c) Microsoft Corporation.
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
# DeepSpeed Team
|
| 7 |
-
|
| 8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
-
# application.
|
| 12 |
-
#
|
| 13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
-
|
| 15 |
-
import argparse
|
| 16 |
-
import torch
|
| 17 |
-
import glob
|
| 18 |
-
import math
|
| 19 |
-
import os
|
| 20 |
-
import re
|
| 21 |
-
from collections import OrderedDict
|
| 22 |
-
from dataclasses import dataclass
|
| 23 |
-
|
| 24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
-
from deepspeed.utils import logger
|
| 27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
@dataclass
|
| 33 |
-
class zero_model_state:
|
| 34 |
-
buffers: dict()
|
| 35 |
-
param_shapes: dict()
|
| 36 |
-
shared_params: list
|
| 37 |
-
ds_version: int
|
| 38 |
-
frozen_param_shapes: dict()
|
| 39 |
-
frozen_param_fragments: dict()
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
debug = 0
|
| 43 |
-
|
| 44 |
-
# load to cpu
|
| 45 |
-
device = torch.device('cpu')
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def atoi(text):
|
| 49 |
-
return int(text) if text.isdigit() else text
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def natural_keys(text):
|
| 53 |
-
'''
|
| 54 |
-
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
-
(See Toothy's implementation in the comments)
|
| 57 |
-
'''
|
| 58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
-
if not os.path.isdir(checkpoint_dir):
|
| 63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
-
|
| 65 |
-
# there should be only one file
|
| 66 |
-
if zero_stage <= 2:
|
| 67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
-
elif zero_stage == 3:
|
| 69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
-
|
| 71 |
-
if not os.path.exists(file):
|
| 72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
-
|
| 74 |
-
return file
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
-
|
| 81 |
-
if len(ckpt_files) == 0:
|
| 82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
-
|
| 84 |
-
return ckpt_files
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def get_optim_files(checkpoint_dir):
|
| 88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def get_model_state_files(checkpoint_dir):
|
| 92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def parse_model_states(files):
|
| 96 |
-
zero_model_states = []
|
| 97 |
-
for file in files:
|
| 98 |
-
state_dict = torch.load(file, map_location=device)
|
| 99 |
-
|
| 100 |
-
if BUFFER_NAMES not in state_dict:
|
| 101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
-
if debug:
|
| 104 |
-
print("Found buffers:", buffer_names)
|
| 105 |
-
|
| 106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
-
|
| 110 |
-
# collect parameters that are included in param_shapes
|
| 111 |
-
param_names = []
|
| 112 |
-
for s in param_shapes:
|
| 113 |
-
for name in s.keys():
|
| 114 |
-
param_names.append(name)
|
| 115 |
-
|
| 116 |
-
# update with frozen parameters
|
| 117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
-
if frozen_param_shapes is not None:
|
| 119 |
-
if debug:
|
| 120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
-
param_names += list(frozen_param_shapes.keys())
|
| 122 |
-
|
| 123 |
-
# handle shared params
|
| 124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
-
|
| 126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
-
|
| 128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
-
|
| 130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
-
param_shapes=param_shapes,
|
| 132 |
-
shared_params=shared_params,
|
| 133 |
-
ds_version=ds_version,
|
| 134 |
-
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
-
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
-
zero_model_states.append(z_model_state)
|
| 137 |
-
|
| 138 |
-
return zero_model_states
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
-
|
| 143 |
-
total_files = len(files)
|
| 144 |
-
state_dicts = []
|
| 145 |
-
for f in files:
|
| 146 |
-
state_dict = torch.load(f, map_location=device)
|
| 147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
-
# and also handle the case where it was already removed by another helper script
|
| 149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
-
state_dicts.append(state_dict)
|
| 151 |
-
|
| 152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
-
|
| 157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
-
# use the max of the partition_count to get the dp world_size.
|
| 160 |
-
|
| 161 |
-
if type(world_size) is list:
|
| 162 |
-
world_size = max(world_size)
|
| 163 |
-
|
| 164 |
-
if world_size != total_files:
|
| 165 |
-
raise ValueError(
|
| 166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# the groups are named differently in each stage
|
| 171 |
-
if zero_stage <= 2:
|
| 172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
-
elif zero_stage == 3:
|
| 174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
-
else:
|
| 176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
-
|
| 178 |
-
if zero_stage <= 2:
|
| 179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
-
elif zero_stage == 3:
|
| 181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
-
#
|
| 184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
-
|
| 187 |
-
fp32_flat_groups = [
|
| 188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
-
]
|
| 190 |
-
|
| 191 |
-
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
-
"""
|
| 196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
-
|
| 198 |
-
Args:
|
| 199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
-
|
| 201 |
-
"""
|
| 202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
-
|
| 204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
-
|
| 208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
-
|
| 210 |
-
zero_model_states = parse_model_states(model_files)
|
| 211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
-
|
| 213 |
-
if zero_stage <= 2:
|
| 214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
-
elif zero_stage == 3:
|
| 216 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
-
return
|
| 222 |
-
|
| 223 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
-
|
| 226 |
-
if debug:
|
| 227 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
-
|
| 230 |
-
wanted_params = len(frozen_param_shapes)
|
| 231 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
-
|
| 236 |
-
total_params = 0
|
| 237 |
-
total_numel = 0
|
| 238 |
-
for name, shape in frozen_param_shapes.items():
|
| 239 |
-
total_params += 1
|
| 240 |
-
unpartitioned_numel = shape.numel()
|
| 241 |
-
total_numel += unpartitioned_numel
|
| 242 |
-
|
| 243 |
-
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
-
|
| 245 |
-
if debug:
|
| 246 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
-
|
| 248 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def _has_callable(obj, fn):
|
| 252 |
-
attr = getattr(obj, fn, None)
|
| 253 |
-
return callable(attr)
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
-
|
| 259 |
-
# Reconstruction protocol:
|
| 260 |
-
#
|
| 261 |
-
# XXX: document this
|
| 262 |
-
|
| 263 |
-
if debug:
|
| 264 |
-
for i in range(world_size):
|
| 265 |
-
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
-
|
| 268 |
-
# XXX: memory usage doubles here (zero2)
|
| 269 |
-
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
-
merged_single_partition_of_fp32_groups = []
|
| 271 |
-
for i in range(num_param_groups):
|
| 272 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
-
avail_numel = sum(
|
| 276 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
-
|
| 278 |
-
if debug:
|
| 279 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
-
# not asserting if there is a mismatch due to possible padding
|
| 282 |
-
print(f"Have {avail_numel} numels to process.")
|
| 283 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
-
|
| 285 |
-
# params
|
| 286 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
-
# out-of-core computing solution
|
| 288 |
-
total_numel = 0
|
| 289 |
-
total_params = 0
|
| 290 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
-
offset = 0
|
| 292 |
-
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
-
for name, shape in shapes.items():
|
| 294 |
-
|
| 295 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
-
total_numel += unpartitioned_numel
|
| 297 |
-
total_params += 1
|
| 298 |
-
|
| 299 |
-
if debug:
|
| 300 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
-
offset += unpartitioned_numel
|
| 303 |
-
|
| 304 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
-
align_to = 2 * world_size
|
| 309 |
-
|
| 310 |
-
def zero2_align(x):
|
| 311 |
-
return align_to * math.ceil(x / align_to)
|
| 312 |
-
|
| 313 |
-
if debug:
|
| 314 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
-
|
| 316 |
-
offset = zero2_align(offset)
|
| 317 |
-
avail_numel = zero2_align(avail_numel)
|
| 318 |
-
|
| 319 |
-
if debug:
|
| 320 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
-
|
| 322 |
-
# Sanity check
|
| 323 |
-
if offset != avail_numel:
|
| 324 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
-
|
| 326 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
-
state_dict = OrderedDict()
|
| 331 |
-
|
| 332 |
-
# buffers
|
| 333 |
-
buffers = zero_model_states[0].buffers
|
| 334 |
-
state_dict.update(buffers)
|
| 335 |
-
if debug:
|
| 336 |
-
print(f"added {len(buffers)} buffers")
|
| 337 |
-
|
| 338 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
-
|
| 340 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
-
|
| 342 |
-
# recover shared parameters
|
| 343 |
-
for pair in zero_model_states[0].shared_params:
|
| 344 |
-
if pair[1] in state_dict:
|
| 345 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
-
|
| 347 |
-
return state_dict
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
-
remainder = unpartitioned_numel % world_size
|
| 352 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
-
return partitioned_numel, padding_numel
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
-
return
|
| 360 |
-
|
| 361 |
-
if debug:
|
| 362 |
-
for i in range(world_size):
|
| 363 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
-
|
| 366 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
-
wanted_params = len(frozen_param_shapes)
|
| 368 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
-
|
| 373 |
-
total_params = 0
|
| 374 |
-
total_numel = 0
|
| 375 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
-
total_params += 1
|
| 377 |
-
unpartitioned_numel = shape.numel()
|
| 378 |
-
total_numel += unpartitioned_numel
|
| 379 |
-
|
| 380 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
-
|
| 383 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
-
|
| 385 |
-
if debug:
|
| 386 |
-
print(
|
| 387 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
-
)
|
| 389 |
-
|
| 390 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
-
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
-
|
| 399 |
-
# merge list of dicts, preserving order
|
| 400 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
-
|
| 402 |
-
if debug:
|
| 403 |
-
for i in range(world_size):
|
| 404 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
-
|
| 406 |
-
wanted_params = len(param_shapes)
|
| 407 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
-
# not asserting if there is a mismatch due to possible padding
|
| 409 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
-
|
| 413 |
-
# params
|
| 414 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
-
# out-of-core computing solution
|
| 416 |
-
offset = 0
|
| 417 |
-
total_numel = 0
|
| 418 |
-
total_params = 0
|
| 419 |
-
for name, shape in param_shapes.items():
|
| 420 |
-
|
| 421 |
-
unpartitioned_numel = shape.numel()
|
| 422 |
-
total_numel += unpartitioned_numel
|
| 423 |
-
total_params += 1
|
| 424 |
-
|
| 425 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
-
|
| 427 |
-
if debug:
|
| 428 |
-
print(
|
| 429 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
# XXX: memory usage doubles here
|
| 433 |
-
state_dict[name] = torch.cat(
|
| 434 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
-
offset += partitioned_numel
|
| 437 |
-
|
| 438 |
-
offset *= world_size
|
| 439 |
-
|
| 440 |
-
# Sanity check
|
| 441 |
-
if offset != avail_numel:
|
| 442 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
-
|
| 444 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
-
state_dict = OrderedDict()
|
| 449 |
-
|
| 450 |
-
# buffers
|
| 451 |
-
buffers = zero_model_states[0].buffers
|
| 452 |
-
state_dict.update(buffers)
|
| 453 |
-
if debug:
|
| 454 |
-
print(f"added {len(buffers)} buffers")
|
| 455 |
-
|
| 456 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
-
|
| 458 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
-
|
| 460 |
-
# recover shared parameters
|
| 461 |
-
for pair in zero_model_states[0].shared_params:
|
| 462 |
-
if pair[1] in state_dict:
|
| 463 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
-
|
| 465 |
-
return state_dict
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
-
"""
|
| 470 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
-
via a model hub.
|
| 473 |
-
|
| 474 |
-
Args:
|
| 475 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
-
|
| 478 |
-
Returns:
|
| 479 |
-
- pytorch ``state_dict``
|
| 480 |
-
|
| 481 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
-
the checkpoint.
|
| 484 |
-
|
| 485 |
-
A typical usage might be ::
|
| 486 |
-
|
| 487 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
-
# do the training and checkpoint saving
|
| 489 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
-
model = model.cpu() # move to cpu
|
| 491 |
-
model.load_state_dict(state_dict)
|
| 492 |
-
# submit to model hub or save the model to share with others
|
| 493 |
-
|
| 494 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
-
|
| 498 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
-
|
| 500 |
-
"""
|
| 501 |
-
if tag is None:
|
| 502 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
-
if os.path.isfile(latest_path):
|
| 504 |
-
with open(latest_path, 'r') as fd:
|
| 505 |
-
tag = fd.read().strip()
|
| 506 |
-
else:
|
| 507 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
-
|
| 509 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
-
|
| 511 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
-
|
| 514 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
-
"""
|
| 519 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
-
|
| 522 |
-
Args:
|
| 523 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
-
"""
|
| 527 |
-
|
| 528 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
-
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
-
torch.save(state_dict, output_file)
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
-
"""
|
| 535 |
-
1. Put the provided model to cpu
|
| 536 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
-
3. Load it into the provided model
|
| 538 |
-
|
| 539 |
-
Args:
|
| 540 |
-
- ``model``: the model object to update
|
| 541 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
-
|
| 544 |
-
Returns:
|
| 545 |
-
- ``model`: modified model
|
| 546 |
-
|
| 547 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
-
conveniently placed for you in the checkpoint folder.
|
| 550 |
-
|
| 551 |
-
A typical usage might be ::
|
| 552 |
-
|
| 553 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
-
# submit to model hub or save the model to share with others
|
| 556 |
-
|
| 557 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
-
|
| 561 |
-
"""
|
| 562 |
-
logger.info(f"Extracting fp32 weights")
|
| 563 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
-
|
| 565 |
-
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
-
model = model.cpu()
|
| 567 |
-
model.load_state_dict(state_dict, strict=False)
|
| 568 |
-
|
| 569 |
-
return model
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
if __name__ == "__main__":
|
| 573 |
-
|
| 574 |
-
parser = argparse.ArgumentParser()
|
| 575 |
-
parser.add_argument("checkpoint_dir",
|
| 576 |
-
type=str,
|
| 577 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
-
parser.add_argument(
|
| 579 |
-
"output_file",
|
| 580 |
-
type=str,
|
| 581 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
-
parser.add_argument("-t",
|
| 583 |
-
"--tag",
|
| 584 |
-
type=str,
|
| 585 |
-
default=None,
|
| 586 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
-
args = parser.parse_args()
|
| 589 |
-
|
| 590 |
-
debug = args.debug
|
| 591 |
-
|
| 592 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,202 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: peft
|
| 3 |
-
base_model: google/gemma-7b-it
|
| 4 |
-
---
|
| 5 |
-
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"alpha_pattern": {},
|
| 3 |
-
"auto_mapping": null,
|
| 4 |
-
"base_model_name_or_path": "google/gemma-7b-it",
|
| 5 |
-
"bias": "none",
|
| 6 |
-
"fan_in_fan_out": null,
|
| 7 |
-
"inference_mode": true,
|
| 8 |
-
"init_lora_weights": true,
|
| 9 |
-
"layers_pattern": null,
|
| 10 |
-
"layers_to_transform": null,
|
| 11 |
-
"loftq_config": {},
|
| 12 |
-
"lora_alpha": 16,
|
| 13 |
-
"lora_dropout": 0.05,
|
| 14 |
-
"megatron_config": null,
|
| 15 |
-
"megatron_core": "megatron.core",
|
| 16 |
-
"modules_to_save": null,
|
| 17 |
-
"peft_type": "LORA",
|
| 18 |
-
"r": 32,
|
| 19 |
-
"rank_pattern": {},
|
| 20 |
-
"revision": null,
|
| 21 |
-
"target_modules": [
|
| 22 |
-
"down_proj",
|
| 23 |
-
"o_proj",
|
| 24 |
-
"k_proj",
|
| 25 |
-
"q_proj",
|
| 26 |
-
"gate_proj",
|
| 27 |
-
"up_proj",
|
| 28 |
-
"v_proj"
|
| 29 |
-
],
|
| 30 |
-
"task_type": "CAUSAL_LM",
|
| 31 |
-
"use_dora": false,
|
| 32 |
-
"use_rslora": false
|
| 33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9c23b965687f7bf2e033e1e8051de69e24c99f3103c06606007e68485ebfabea
|
| 3 |
-
size 200068904
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:712292fc7e5a6d570c1376cc3be7e12dab2d34fb7ffe48281da38c8053603a39
|
| 3 |
-
size 150126608
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d3c6bbd461df3af80fb33496e1907ef542102bfa96434d50c174fe80c0dd98e4
|
| 3 |
-
size 150126672
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:46fee0787345b6483d7a54f3ceeb3260a7a8bef008c22e24c18225027433ff01
|
| 3 |
-
size 150126736
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0fbe9084b027f2164f5fa8039ea7d37a722d0e0f9f70b2a76fa605e462a2ad6e
|
| 3 |
-
size 150126736
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a38ea9a669e473fff57e6c134dd6703ddacc9f123121be165e81bcdcad09513b
|
| 3 |
-
size 1896781286
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step372
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:4ebe22192845fac896cd970f52665ebcfd6b5796077804b55f0d8830fcfa32be
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a5bbd2194b05d2155d794f7732bdab8deaa38ee92f4c49fa250d0c9f0fd5f532
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f480e768d1b3f6474c222ba1e9d373d3fa99aeb3a944de3d1648ac20b4077d2a
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:58480874185eed88dd61379fe4c13e95c8e8899caf976ff7beca6c2c29f825de
|
| 3 |
-
size 15024
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f0a1b84ad14ee5a7b2967e455e771394bef96a10da0abeba0c7fac61961ff2bf
|
| 3 |
-
size 1064
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,2753 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"best_metric": null,
|
| 3 |
-
"best_model_checkpoint": null,
|
| 4 |
-
"epoch": 3.9715302491103204,
|
| 5 |
-
"eval_steps": 24,
|
| 6 |
-
"global_step": 372,
|
| 7 |
-
"is_hyper_param_search": false,
|
| 8 |
-
"is_local_process_zero": true,
|
| 9 |
-
"is_world_process_zero": true,
|
| 10 |
-
"log_history": [
|
| 11 |
-
{
|
| 12 |
-
"epoch": 0.01,
|
| 13 |
-
"grad_norm": 1.8206765789002874,
|
| 14 |
-
"learning_rate": 2.2222222222222223e-05,
|
| 15 |
-
"loss": 5.0474,
|
| 16 |
-
"step": 1
|
| 17 |
-
},
|
| 18 |
-
{
|
| 19 |
-
"epoch": 0.01,
|
| 20 |
-
"eval_loss": 5.927858829498291,
|
| 21 |
-
"eval_runtime": 117.3665,
|
| 22 |
-
"eval_samples_per_second": 8.512,
|
| 23 |
-
"eval_steps_per_second": 0.537,
|
| 24 |
-
"step": 1
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"epoch": 0.02,
|
| 28 |
-
"grad_norm": 1.9889295079554647,
|
| 29 |
-
"learning_rate": 4.4444444444444447e-05,
|
| 30 |
-
"loss": 5.5569,
|
| 31 |
-
"step": 2
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"epoch": 0.03,
|
| 35 |
-
"grad_norm": 1.8931443004310682,
|
| 36 |
-
"learning_rate": 6.666666666666667e-05,
|
| 37 |
-
"loss": 5.2383,
|
| 38 |
-
"step": 3
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"epoch": 0.04,
|
| 42 |
-
"grad_norm": 2.195266234429632,
|
| 43 |
-
"learning_rate": 8.888888888888889e-05,
|
| 44 |
-
"loss": 5.4943,
|
| 45 |
-
"step": 4
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"epoch": 0.05,
|
| 49 |
-
"grad_norm": 2.6001064132041503,
|
| 50 |
-
"learning_rate": 0.00011111111111111112,
|
| 51 |
-
"loss": 5.2602,
|
| 52 |
-
"step": 5
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"epoch": 0.06,
|
| 56 |
-
"grad_norm": 3.26301463076567,
|
| 57 |
-
"learning_rate": 0.00013333333333333334,
|
| 58 |
-
"loss": 4.8182,
|
| 59 |
-
"step": 6
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"epoch": 0.07,
|
| 63 |
-
"grad_norm": 3.476044691292363,
|
| 64 |
-
"learning_rate": 0.00015555555555555556,
|
| 65 |
-
"loss": 4.0432,
|
| 66 |
-
"step": 7
|
| 67 |
-
},
|
| 68 |
-
{
|
| 69 |
-
"epoch": 0.09,
|
| 70 |
-
"grad_norm": 3.378803229553045,
|
| 71 |
-
"learning_rate": 0.00017777777777777779,
|
| 72 |
-
"loss": 3.5212,
|
| 73 |
-
"step": 8
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"epoch": 0.1,
|
| 77 |
-
"grad_norm": 3.9419449437137017,
|
| 78 |
-
"learning_rate": 0.0002,
|
| 79 |
-
"loss": 3.2239,
|
| 80 |
-
"step": 9
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"epoch": 0.11,
|
| 84 |
-
"grad_norm": 5.8833082175146485,
|
| 85 |
-
"learning_rate": 0.00019999625498303932,
|
| 86 |
-
"loss": 3.4319,
|
| 87 |
-
"step": 10
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"epoch": 0.12,
|
| 91 |
-
"grad_norm": 5.4690223843996515,
|
| 92 |
-
"learning_rate": 0.0001999850202126604,
|
| 93 |
-
"loss": 2.8167,
|
| 94 |
-
"step": 11
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"epoch": 0.13,
|
| 98 |
-
"grad_norm": 7.009614336449043,
|
| 99 |
-
"learning_rate": 0.00019996629653035126,
|
| 100 |
-
"loss": 2.7966,
|
| 101 |
-
"step": 12
|
| 102 |
-
},
|
| 103 |
-
{
|
| 104 |
-
"epoch": 0.14,
|
| 105 |
-
"grad_norm": 6.254841874500106,
|
| 106 |
-
"learning_rate": 0.0001999400853385221,
|
| 107 |
-
"loss": 2.1336,
|
| 108 |
-
"step": 13
|
| 109 |
-
},
|
| 110 |
-
{
|
| 111 |
-
"epoch": 0.15,
|
| 112 |
-
"grad_norm": 6.037710889841169,
|
| 113 |
-
"learning_rate": 0.00019990638860040006,
|
| 114 |
-
"loss": 1.85,
|
| 115 |
-
"step": 14
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"epoch": 0.16,
|
| 119 |
-
"grad_norm": 1.0500019118881985,
|
| 120 |
-
"learning_rate": 0.00019986520883988232,
|
| 121 |
-
"loss": 1.5964,
|
| 122 |
-
"step": 15
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"epoch": 0.17,
|
| 126 |
-
"grad_norm": 0.6169710624824223,
|
| 127 |
-
"learning_rate": 0.00019981654914134686,
|
| 128 |
-
"loss": 1.4307,
|
| 129 |
-
"step": 16
|
| 130 |
-
},
|
| 131 |
-
{
|
| 132 |
-
"epoch": 0.18,
|
| 133 |
-
"grad_norm": 1.86114059095932,
|
| 134 |
-
"learning_rate": 0.00019976041314942155,
|
| 135 |
-
"loss": 1.4285,
|
| 136 |
-
"step": 17
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"epoch": 0.19,
|
| 140 |
-
"grad_norm": 1.6513877610200167,
|
| 141 |
-
"learning_rate": 0.00019969680506871137,
|
| 142 |
-
"loss": 1.4621,
|
| 143 |
-
"step": 18
|
| 144 |
-
},
|
| 145 |
-
{
|
| 146 |
-
"epoch": 0.2,
|
| 147 |
-
"grad_norm": 1.4395882738454628,
|
| 148 |
-
"learning_rate": 0.000199625729663483,
|
| 149 |
-
"loss": 1.3561,
|
| 150 |
-
"step": 19
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"epoch": 0.21,
|
| 154 |
-
"grad_norm": 0.70847060238536,
|
| 155 |
-
"learning_rate": 0.00019954719225730847,
|
| 156 |
-
"loss": 1.3565,
|
| 157 |
-
"step": 20
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"epoch": 0.22,
|
| 161 |
-
"grad_norm": 0.4331630595385925,
|
| 162 |
-
"learning_rate": 0.00019946119873266613,
|
| 163 |
-
"loss": 1.3374,
|
| 164 |
-
"step": 21
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"epoch": 0.23,
|
| 168 |
-
"grad_norm": 0.5580281682185451,
|
| 169 |
-
"learning_rate": 0.0001993677555305002,
|
| 170 |
-
"loss": 1.313,
|
| 171 |
-
"step": 22
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"epoch": 0.25,
|
| 175 |
-
"grad_norm": 0.5217443953771937,
|
| 176 |
-
"learning_rate": 0.00019926686964973813,
|
| 177 |
-
"loss": 1.2541,
|
| 178 |
-
"step": 23
|
| 179 |
-
},
|
| 180 |
-
{
|
| 181 |
-
"epoch": 0.26,
|
| 182 |
-
"grad_norm": 0.36823120314463453,
|
| 183 |
-
"learning_rate": 0.00019915854864676664,
|
| 184 |
-
"loss": 1.2191,
|
| 185 |
-
"step": 24
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"epoch": 0.26,
|
| 189 |
-
"eval_loss": 1.2946609258651733,
|
| 190 |
-
"eval_runtime": 118.9039,
|
| 191 |
-
"eval_samples_per_second": 8.402,
|
| 192 |
-
"eval_steps_per_second": 0.53,
|
| 193 |
-
"step": 24
|
| 194 |
-
},
|
| 195 |
-
{
|
| 196 |
-
"epoch": 0.27,
|
| 197 |
-
"grad_norm": 0.5797477063688413,
|
| 198 |
-
"learning_rate": 0.0001990428006348656,
|
| 199 |
-
"loss": 1.24,
|
| 200 |
-
"step": 25
|
| 201 |
-
},
|
| 202 |
-
{
|
| 203 |
-
"epoch": 0.28,
|
| 204 |
-
"grad_norm": 0.41369538857234545,
|
| 205 |
-
"learning_rate": 0.00019891963428360043,
|
| 206 |
-
"loss": 1.209,
|
| 207 |
-
"step": 26
|
| 208 |
-
},
|
| 209 |
-
{
|
| 210 |
-
"epoch": 0.29,
|
| 211 |
-
"grad_norm": 0.36666008426797836,
|
| 212 |
-
"learning_rate": 0.00019878905881817252,
|
| 213 |
-
"loss": 1.2543,
|
| 214 |
-
"step": 27
|
| 215 |
-
},
|
| 216 |
-
{
|
| 217 |
-
"epoch": 0.3,
|
| 218 |
-
"grad_norm": 0.3976779691989045,
|
| 219 |
-
"learning_rate": 0.00019865108401872857,
|
| 220 |
-
"loss": 1.2431,
|
| 221 |
-
"step": 28
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"epoch": 0.31,
|
| 225 |
-
"grad_norm": 0.4992861718630414,
|
| 226 |
-
"learning_rate": 0.00019850572021962788,
|
| 227 |
-
"loss": 1.2471,
|
| 228 |
-
"step": 29
|
| 229 |
-
},
|
| 230 |
-
{
|
| 231 |
-
"epoch": 0.32,
|
| 232 |
-
"grad_norm": 0.33729072192890136,
|
| 233 |
-
"learning_rate": 0.00019835297830866826,
|
| 234 |
-
"loss": 1.1933,
|
| 235 |
-
"step": 30
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"epoch": 0.33,
|
| 239 |
-
"grad_norm": 0.29373457949318904,
|
| 240 |
-
"learning_rate": 0.00019819286972627066,
|
| 241 |
-
"loss": 1.1761,
|
| 242 |
-
"step": 31
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"epoch": 0.34,
|
| 246 |
-
"grad_norm": 0.5339184947140588,
|
| 247 |
-
"learning_rate": 0.0001980254064646223,
|
| 248 |
-
"loss": 1.165,
|
| 249 |
-
"step": 32
|
| 250 |
-
},
|
| 251 |
-
{
|
| 252 |
-
"epoch": 0.35,
|
| 253 |
-
"grad_norm": 0.38755069216510263,
|
| 254 |
-
"learning_rate": 0.00019785060106677818,
|
| 255 |
-
"loss": 1.1236,
|
| 256 |
-
"step": 33
|
| 257 |
-
},
|
| 258 |
-
{
|
| 259 |
-
"epoch": 0.36,
|
| 260 |
-
"grad_norm": 0.338373181403367,
|
| 261 |
-
"learning_rate": 0.00019766846662572191,
|
| 262 |
-
"loss": 1.2102,
|
| 263 |
-
"step": 34
|
| 264 |
-
},
|
| 265 |
-
{
|
| 266 |
-
"epoch": 0.37,
|
| 267 |
-
"grad_norm": 0.39237714718744304,
|
| 268 |
-
"learning_rate": 0.00019747901678338496,
|
| 269 |
-
"loss": 1.1642,
|
| 270 |
-
"step": 35
|
| 271 |
-
},
|
| 272 |
-
{
|
| 273 |
-
"epoch": 0.38,
|
| 274 |
-
"grad_norm": 0.3614249847081747,
|
| 275 |
-
"learning_rate": 0.00019728226572962473,
|
| 276 |
-
"loss": 1.1387,
|
| 277 |
-
"step": 36
|
| 278 |
-
},
|
| 279 |
-
{
|
| 280 |
-
"epoch": 0.4,
|
| 281 |
-
"grad_norm": 0.28278007479509987,
|
| 282 |
-
"learning_rate": 0.00019707822820116193,
|
| 283 |
-
"loss": 1.0939,
|
| 284 |
-
"step": 37
|
| 285 |
-
},
|
| 286 |
-
{
|
| 287 |
-
"epoch": 0.41,
|
| 288 |
-
"grad_norm": 0.3008254873268798,
|
| 289 |
-
"learning_rate": 0.00019686691948047664,
|
| 290 |
-
"loss": 1.1346,
|
| 291 |
-
"step": 38
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"epoch": 0.42,
|
| 295 |
-
"grad_norm": 0.4263010439416343,
|
| 296 |
-
"learning_rate": 0.0001966483553946637,
|
| 297 |
-
"loss": 1.1015,
|
| 298 |
-
"step": 39
|
| 299 |
-
},
|
| 300 |
-
{
|
| 301 |
-
"epoch": 0.43,
|
| 302 |
-
"grad_norm": 0.32725448028464205,
|
| 303 |
-
"learning_rate": 0.00019642255231424729,
|
| 304 |
-
"loss": 1.1324,
|
| 305 |
-
"step": 40
|
| 306 |
-
},
|
| 307 |
-
{
|
| 308 |
-
"epoch": 0.44,
|
| 309 |
-
"grad_norm": 0.3028242900588441,
|
| 310 |
-
"learning_rate": 0.00019618952715195475,
|
| 311 |
-
"loss": 1.1147,
|
| 312 |
-
"step": 41
|
| 313 |
-
},
|
| 314 |
-
{
|
| 315 |
-
"epoch": 0.45,
|
| 316 |
-
"grad_norm": 0.33893311928252234,
|
| 317 |
-
"learning_rate": 0.00019594929736144976,
|
| 318 |
-
"loss": 1.0978,
|
| 319 |
-
"step": 42
|
| 320 |
-
},
|
| 321 |
-
{
|
| 322 |
-
"epoch": 0.46,
|
| 323 |
-
"grad_norm": 0.2786082334492372,
|
| 324 |
-
"learning_rate": 0.0001957018809360251,
|
| 325 |
-
"loss": 1.0933,
|
| 326 |
-
"step": 43
|
| 327 |
-
},
|
| 328 |
-
{
|
| 329 |
-
"epoch": 0.47,
|
| 330 |
-
"grad_norm": 0.2732185168098956,
|
| 331 |
-
"learning_rate": 0.00019544729640725498,
|
| 332 |
-
"loss": 1.084,
|
| 333 |
-
"step": 44
|
| 334 |
-
},
|
| 335 |
-
{
|
| 336 |
-
"epoch": 0.48,
|
| 337 |
-
"grad_norm": 0.33386436894143035,
|
| 338 |
-
"learning_rate": 0.00019518556284360696,
|
| 339 |
-
"loss": 1.0673,
|
| 340 |
-
"step": 45
|
| 341 |
-
},
|
| 342 |
-
{
|
| 343 |
-
"epoch": 0.49,
|
| 344 |
-
"grad_norm": 0.2761688734050621,
|
| 345 |
-
"learning_rate": 0.00019491669984901379,
|
| 346 |
-
"loss": 1.0523,
|
| 347 |
-
"step": 46
|
| 348 |
-
},
|
| 349 |
-
{
|
| 350 |
-
"epoch": 0.5,
|
| 351 |
-
"grad_norm": 0.3346957388610895,
|
| 352 |
-
"learning_rate": 0.00019464072756140486,
|
| 353 |
-
"loss": 1.0913,
|
| 354 |
-
"step": 47
|
| 355 |
-
},
|
| 356 |
-
{
|
| 357 |
-
"epoch": 0.51,
|
| 358 |
-
"grad_norm": 0.30196058996924285,
|
| 359 |
-
"learning_rate": 0.0001943576666511982,
|
| 360 |
-
"loss": 1.1165,
|
| 361 |
-
"step": 48
|
| 362 |
-
},
|
| 363 |
-
{
|
| 364 |
-
"epoch": 0.51,
|
| 365 |
-
"eval_loss": 1.167867660522461,
|
| 366 |
-
"eval_runtime": 119.1485,
|
| 367 |
-
"eval_samples_per_second": 8.384,
|
| 368 |
-
"eval_steps_per_second": 0.529,
|
| 369 |
-
"step": 48
|
| 370 |
-
},
|
| 371 |
-
{
|
| 372 |
-
"epoch": 0.52,
|
| 373 |
-
"grad_norm": 0.27445390350987153,
|
| 374 |
-
"learning_rate": 0.00019406753831975203,
|
| 375 |
-
"loss": 1.1069,
|
| 376 |
-
"step": 49
|
| 377 |
-
},
|
| 378 |
-
{
|
| 379 |
-
"epoch": 0.53,
|
| 380 |
-
"grad_norm": 0.34729097228771255,
|
| 381 |
-
"learning_rate": 0.00019377036429777672,
|
| 382 |
-
"loss": 1.0567,
|
| 383 |
-
"step": 50
|
| 384 |
-
},
|
| 385 |
-
{
|
| 386 |
-
"epoch": 0.54,
|
| 387 |
-
"grad_norm": 0.31314016575739406,
|
| 388 |
-
"learning_rate": 0.0001934661668437073,
|
| 389 |
-
"loss": 1.0875,
|
| 390 |
-
"step": 51
|
| 391 |
-
},
|
| 392 |
-
{
|
| 393 |
-
"epoch": 0.56,
|
| 394 |
-
"grad_norm": 0.29140014335226905,
|
| 395 |
-
"learning_rate": 0.0001931549687420364,
|
| 396 |
-
"loss": 1.0929,
|
| 397 |
-
"step": 52
|
| 398 |
-
},
|
| 399 |
-
{
|
| 400 |
-
"epoch": 0.57,
|
| 401 |
-
"grad_norm": 0.2638104110161505,
|
| 402 |
-
"learning_rate": 0.00019283679330160726,
|
| 403 |
-
"loss": 1.0963,
|
| 404 |
-
"step": 53
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"epoch": 0.58,
|
| 408 |
-
"grad_norm": 0.2833945318119855,
|
| 409 |
-
"learning_rate": 0.0001925116643538684,
|
| 410 |
-
"loss": 1.0535,
|
| 411 |
-
"step": 54
|
| 412 |
-
},
|
| 413 |
-
{
|
| 414 |
-
"epoch": 0.59,
|
| 415 |
-
"grad_norm": 0.28672689795285417,
|
| 416 |
-
"learning_rate": 0.0001921796062510882,
|
| 417 |
-
"loss": 1.0699,
|
| 418 |
-
"step": 55
|
| 419 |
-
},
|
| 420 |
-
{
|
| 421 |
-
"epoch": 0.6,
|
| 422 |
-
"grad_norm": 0.261255409262294,
|
| 423 |
-
"learning_rate": 0.00019184064386453128,
|
| 424 |
-
"loss": 1.0658,
|
| 425 |
-
"step": 56
|
| 426 |
-
},
|
| 427 |
-
{
|
| 428 |
-
"epoch": 0.61,
|
| 429 |
-
"grad_norm": 0.24304864434604007,
|
| 430 |
-
"learning_rate": 0.00019149480258259533,
|
| 431 |
-
"loss": 1.0441,
|
| 432 |
-
"step": 57
|
| 433 |
-
},
|
| 434 |
-
{
|
| 435 |
-
"epoch": 0.62,
|
| 436 |
-
"grad_norm": 0.2987107937915846,
|
| 437 |
-
"learning_rate": 0.00019114210830890969,
|
| 438 |
-
"loss": 1.0061,
|
| 439 |
-
"step": 58
|
| 440 |
-
},
|
| 441 |
-
{
|
| 442 |
-
"epoch": 0.63,
|
| 443 |
-
"grad_norm": 0.2617045441373282,
|
| 444 |
-
"learning_rate": 0.00019078258746039507,
|
| 445 |
-
"loss": 1.0578,
|
| 446 |
-
"step": 59
|
| 447 |
-
},
|
| 448 |
-
{
|
| 449 |
-
"epoch": 0.64,
|
| 450 |
-
"grad_norm": 0.2577955355987167,
|
| 451 |
-
"learning_rate": 0.00019041626696528503,
|
| 452 |
-
"loss": 1.0333,
|
| 453 |
-
"step": 60
|
| 454 |
-
},
|
| 455 |
-
{
|
| 456 |
-
"epoch": 0.65,
|
| 457 |
-
"grad_norm": 0.2823058812174375,
|
| 458 |
-
"learning_rate": 0.0001900431742611089,
|
| 459 |
-
"loss": 1.0837,
|
| 460 |
-
"step": 61
|
| 461 |
-
},
|
| 462 |
-
{
|
| 463 |
-
"epoch": 0.66,
|
| 464 |
-
"grad_norm": 0.30425238718712166,
|
| 465 |
-
"learning_rate": 0.00018966333729263674,
|
| 466 |
-
"loss": 1.0619,
|
| 467 |
-
"step": 62
|
| 468 |
-
},
|
| 469 |
-
{
|
| 470 |
-
"epoch": 0.67,
|
| 471 |
-
"grad_norm": 0.29826831116146957,
|
| 472 |
-
"learning_rate": 0.0001892767845097864,
|
| 473 |
-
"loss": 1.056,
|
| 474 |
-
"step": 63
|
| 475 |
-
},
|
| 476 |
-
{
|
| 477 |
-
"epoch": 0.68,
|
| 478 |
-
"grad_norm": 0.22990267950533677,
|
| 479 |
-
"learning_rate": 0.00018888354486549237,
|
| 480 |
-
"loss": 1.061,
|
| 481 |
-
"step": 64
|
| 482 |
-
},
|
| 483 |
-
{
|
| 484 |
-
"epoch": 0.69,
|
| 485 |
-
"grad_norm": 0.27604852373975236,
|
| 486 |
-
"learning_rate": 0.00018848364781353744,
|
| 487 |
-
"loss": 1.0624,
|
| 488 |
-
"step": 65
|
| 489 |
-
},
|
| 490 |
-
{
|
| 491 |
-
"epoch": 0.7,
|
| 492 |
-
"grad_norm": 0.302101014156969,
|
| 493 |
-
"learning_rate": 0.00018807712330634642,
|
| 494 |
-
"loss": 1.0965,
|
| 495 |
-
"step": 66
|
| 496 |
-
},
|
| 497 |
-
{
|
| 498 |
-
"epoch": 0.72,
|
| 499 |
-
"grad_norm": 0.2532153192142023,
|
| 500 |
-
"learning_rate": 0.00018766400179274286,
|
| 501 |
-
"loss": 1.0972,
|
| 502 |
-
"step": 67
|
| 503 |
-
},
|
| 504 |
-
{
|
| 505 |
-
"epoch": 0.73,
|
| 506 |
-
"grad_norm": 0.23803088057755897,
|
| 507 |
-
"learning_rate": 0.00018724431421566823,
|
| 508 |
-
"loss": 1.0823,
|
| 509 |
-
"step": 68
|
| 510 |
-
},
|
| 511 |
-
{
|
| 512 |
-
"epoch": 0.74,
|
| 513 |
-
"grad_norm": 0.2200041903156331,
|
| 514 |
-
"learning_rate": 0.0001868180920098644,
|
| 515 |
-
"loss": 1.037,
|
| 516 |
-
"step": 69
|
| 517 |
-
},
|
| 518 |
-
{
|
| 519 |
-
"epoch": 0.75,
|
| 520 |
-
"grad_norm": 0.31123761066229655,
|
| 521 |
-
"learning_rate": 0.00018638536709951917,
|
| 522 |
-
"loss": 1.0689,
|
| 523 |
-
"step": 70
|
| 524 |
-
},
|
| 525 |
-
{
|
| 526 |
-
"epoch": 0.76,
|
| 527 |
-
"grad_norm": 0.2760757149384919,
|
| 528 |
-
"learning_rate": 0.00018594617189587512,
|
| 529 |
-
"loss": 1.0071,
|
| 530 |
-
"step": 71
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"epoch": 0.77,
|
| 534 |
-
"grad_norm": 0.2452672521810973,
|
| 535 |
-
"learning_rate": 0.00018550053929480202,
|
| 536 |
-
"loss": 1.0711,
|
| 537 |
-
"step": 72
|
| 538 |
-
},
|
| 539 |
-
{
|
| 540 |
-
"epoch": 0.77,
|
| 541 |
-
"eval_loss": 1.1377497911453247,
|
| 542 |
-
"eval_runtime": 119.461,
|
| 543 |
-
"eval_samples_per_second": 8.363,
|
| 544 |
-
"eval_steps_per_second": 0.527,
|
| 545 |
-
"step": 72
|
| 546 |
-
},
|
| 547 |
-
{
|
| 548 |
-
"epoch": 0.78,
|
| 549 |
-
"grad_norm": 0.30897216290479246,
|
| 550 |
-
"learning_rate": 0.0001850485026743328,
|
| 551 |
-
"loss": 1.0508,
|
| 552 |
-
"step": 73
|
| 553 |
-
},
|
| 554 |
-
{
|
| 555 |
-
"epoch": 0.79,
|
| 556 |
-
"grad_norm": 0.24165903393157925,
|
| 557 |
-
"learning_rate": 0.00018459009589216364,
|
| 558 |
-
"loss": 1.046,
|
| 559 |
-
"step": 74
|
| 560 |
-
},
|
| 561 |
-
{
|
| 562 |
-
"epoch": 0.8,
|
| 563 |
-
"grad_norm": 0.2509819208307879,
|
| 564 |
-
"learning_rate": 0.00018412535328311814,
|
| 565 |
-
"loss": 1.0726,
|
| 566 |
-
"step": 75
|
| 567 |
-
},
|
| 568 |
-
{
|
| 569 |
-
"epoch": 0.81,
|
| 570 |
-
"grad_norm": 0.26145395006758515,
|
| 571 |
-
"learning_rate": 0.00018365430965657526,
|
| 572 |
-
"loss": 0.9998,
|
| 573 |
-
"step": 76
|
| 574 |
-
},
|
| 575 |
-
{
|
| 576 |
-
"epoch": 0.82,
|
| 577 |
-
"grad_norm": 0.26920709605794424,
|
| 578 |
-
"learning_rate": 0.00018317700029386245,
|
| 579 |
-
"loss": 1.065,
|
| 580 |
-
"step": 77
|
| 581 |
-
},
|
| 582 |
-
{
|
| 583 |
-
"epoch": 0.83,
|
| 584 |
-
"grad_norm": 0.24226754926786417,
|
| 585 |
-
"learning_rate": 0.0001826934609456129,
|
| 586 |
-
"loss": 1.0489,
|
| 587 |
-
"step": 78
|
| 588 |
-
},
|
| 589 |
-
{
|
| 590 |
-
"epoch": 0.84,
|
| 591 |
-
"grad_norm": 0.3022365661006827,
|
| 592 |
-
"learning_rate": 0.00018220372782908777,
|
| 593 |
-
"loss": 1.0372,
|
| 594 |
-
"step": 79
|
| 595 |
-
},
|
| 596 |
-
{
|
| 597 |
-
"epoch": 0.85,
|
| 598 |
-
"grad_norm": 0.25795710005352673,
|
| 599 |
-
"learning_rate": 0.00018170783762546365,
|
| 600 |
-
"loss": 1.0128,
|
| 601 |
-
"step": 80
|
| 602 |
-
},
|
| 603 |
-
{
|
| 604 |
-
"epoch": 0.86,
|
| 605 |
-
"grad_norm": 0.3490748875058354,
|
| 606 |
-
"learning_rate": 0.00018120582747708502,
|
| 607 |
-
"loss": 1.0168,
|
| 608 |
-
"step": 81
|
| 609 |
-
},
|
| 610 |
-
{
|
| 611 |
-
"epoch": 0.88,
|
| 612 |
-
"grad_norm": 0.24938209735120945,
|
| 613 |
-
"learning_rate": 0.00018069773498468223,
|
| 614 |
-
"loss": 0.9586,
|
| 615 |
-
"step": 82
|
| 616 |
-
},
|
| 617 |
-
{
|
| 618 |
-
"epoch": 0.89,
|
| 619 |
-
"grad_norm": 0.2527612545099894,
|
| 620 |
-
"learning_rate": 0.00018018359820455536,
|
| 621 |
-
"loss": 1.0385,
|
| 622 |
-
"step": 83
|
| 623 |
-
},
|
| 624 |
-
{
|
| 625 |
-
"epoch": 0.9,
|
| 626 |
-
"grad_norm": 0.27528879975094916,
|
| 627 |
-
"learning_rate": 0.0001796634556457236,
|
| 628 |
-
"loss": 1.0328,
|
| 629 |
-
"step": 84
|
| 630 |
-
},
|
| 631 |
-
{
|
| 632 |
-
"epoch": 0.91,
|
| 633 |
-
"grad_norm": 0.2605002777661913,
|
| 634 |
-
"learning_rate": 0.0001791373462670411,
|
| 635 |
-
"loss": 0.9966,
|
| 636 |
-
"step": 85
|
| 637 |
-
},
|
| 638 |
-
{
|
| 639 |
-
"epoch": 0.92,
|
| 640 |
-
"grad_norm": 0.3117107796665858,
|
| 641 |
-
"learning_rate": 0.00017860530947427875,
|
| 642 |
-
"loss": 0.9772,
|
| 643 |
-
"step": 86
|
| 644 |
-
},
|
| 645 |
-
{
|
| 646 |
-
"epoch": 0.93,
|
| 647 |
-
"grad_norm": 0.28336227154677734,
|
| 648 |
-
"learning_rate": 0.0001780673851171728,
|
| 649 |
-
"loss": 1.0724,
|
| 650 |
-
"step": 87
|
| 651 |
-
},
|
| 652 |
-
{
|
| 653 |
-
"epoch": 0.94,
|
| 654 |
-
"grad_norm": 0.42707817919652674,
|
| 655 |
-
"learning_rate": 0.0001775236134864401,
|
| 656 |
-
"loss": 1.0038,
|
| 657 |
-
"step": 88
|
| 658 |
-
},
|
| 659 |
-
{
|
| 660 |
-
"epoch": 0.95,
|
| 661 |
-
"grad_norm": 0.29236016959846456,
|
| 662 |
-
"learning_rate": 0.0001769740353107602,
|
| 663 |
-
"loss": 1.0083,
|
| 664 |
-
"step": 89
|
| 665 |
-
},
|
| 666 |
-
{
|
| 667 |
-
"epoch": 0.96,
|
| 668 |
-
"grad_norm": 0.43295063403530637,
|
| 669 |
-
"learning_rate": 0.00017641869175372493,
|
| 670 |
-
"loss": 1.022,
|
| 671 |
-
"step": 90
|
| 672 |
-
},
|
| 673 |
-
{
|
| 674 |
-
"epoch": 0.97,
|
| 675 |
-
"grad_norm": 0.3086663897043129,
|
| 676 |
-
"learning_rate": 0.00017585762441075503,
|
| 677 |
-
"loss": 1.0303,
|
| 678 |
-
"step": 91
|
| 679 |
-
},
|
| 680 |
-
{
|
| 681 |
-
"epoch": 0.98,
|
| 682 |
-
"grad_norm": 0.2783768981163154,
|
| 683 |
-
"learning_rate": 0.0001752908753059849,
|
| 684 |
-
"loss": 1.061,
|
| 685 |
-
"step": 92
|
| 686 |
-
},
|
| 687 |
-
{
|
| 688 |
-
"epoch": 0.99,
|
| 689 |
-
"grad_norm": 0.43168501819843275,
|
| 690 |
-
"learning_rate": 0.00017471848688911464,
|
| 691 |
-
"loss": 1.0631,
|
| 692 |
-
"step": 93
|
| 693 |
-
},
|
| 694 |
-
{
|
| 695 |
-
"epoch": 1.0,
|
| 696 |
-
"grad_norm": 0.25487494913299935,
|
| 697 |
-
"learning_rate": 0.0001741405020322309,
|
| 698 |
-
"loss": 0.9858,
|
| 699 |
-
"step": 94
|
| 700 |
-
},
|
| 701 |
-
{
|
| 702 |
-
"epoch": 1.01,
|
| 703 |
-
"grad_norm": 0.3229761094582219,
|
| 704 |
-
"learning_rate": 0.00017355696402659548,
|
| 705 |
-
"loss": 0.9495,
|
| 706 |
-
"step": 95
|
| 707 |
-
},
|
| 708 |
-
{
|
| 709 |
-
"epoch": 1.02,
|
| 710 |
-
"grad_norm": 0.3178464701266748,
|
| 711 |
-
"learning_rate": 0.000172967916579403,
|
| 712 |
-
"loss": 0.9546,
|
| 713 |
-
"step": 96
|
| 714 |
-
},
|
| 715 |
-
{
|
| 716 |
-
"epoch": 1.02,
|
| 717 |
-
"eval_loss": 1.1303094625473022,
|
| 718 |
-
"eval_runtime": 119.6761,
|
| 719 |
-
"eval_samples_per_second": 8.348,
|
| 720 |
-
"eval_steps_per_second": 0.526,
|
| 721 |
-
"step": 96
|
| 722 |
-
},
|
| 723 |
-
{
|
| 724 |
-
"epoch": 1.04,
|
| 725 |
-
"grad_norm": 0.2534616980189548,
|
| 726 |
-
"learning_rate": 0.00017237340381050703,
|
| 727 |
-
"loss": 0.9509,
|
| 728 |
-
"step": 97
|
| 729 |
-
},
|
| 730 |
-
{
|
| 731 |
-
"epoch": 1.05,
|
| 732 |
-
"grad_norm": 0.2354382873554396,
|
| 733 |
-
"learning_rate": 0.00017177347024911562,
|
| 734 |
-
"loss": 0.9611,
|
| 735 |
-
"step": 98
|
| 736 |
-
},
|
| 737 |
-
{
|
| 738 |
-
"epoch": 1.06,
|
| 739 |
-
"grad_norm": 0.2754259154521738,
|
| 740 |
-
"learning_rate": 0.00017116816083045602,
|
| 741 |
-
"loss": 0.9184,
|
| 742 |
-
"step": 99
|
| 743 |
-
},
|
| 744 |
-
{
|
| 745 |
-
"epoch": 1.07,
|
| 746 |
-
"grad_norm": 0.25868181129480755,
|
| 747 |
-
"learning_rate": 0.00017055752089240907,
|
| 748 |
-
"loss": 0.957,
|
| 749 |
-
"step": 100
|
| 750 |
-
},
|
| 751 |
-
{
|
| 752 |
-
"epoch": 1.08,
|
| 753 |
-
"grad_norm": 0.2383943586330267,
|
| 754 |
-
"learning_rate": 0.00016994159617211317,
|
| 755 |
-
"loss": 0.9638,
|
| 756 |
-
"step": 101
|
| 757 |
-
},
|
| 758 |
-
{
|
| 759 |
-
"epoch": 1.09,
|
| 760 |
-
"grad_norm": 0.2706420372628291,
|
| 761 |
-
"learning_rate": 0.0001693204328025389,
|
| 762 |
-
"loss": 0.9115,
|
| 763 |
-
"step": 102
|
| 764 |
-
},
|
| 765 |
-
{
|
| 766 |
-
"epoch": 1.1,
|
| 767 |
-
"grad_norm": 0.2751042656041904,
|
| 768 |
-
"learning_rate": 0.0001686940773090333,
|
| 769 |
-
"loss": 0.9277,
|
| 770 |
-
"step": 103
|
| 771 |
-
},
|
| 772 |
-
{
|
| 773 |
-
"epoch": 1.11,
|
| 774 |
-
"grad_norm": 0.27700872737428867,
|
| 775 |
-
"learning_rate": 0.00016806257660583534,
|
| 776 |
-
"loss": 0.9248,
|
| 777 |
-
"step": 104
|
| 778 |
-
},
|
| 779 |
-
{
|
| 780 |
-
"epoch": 1.12,
|
| 781 |
-
"grad_norm": 0.3350046312844708,
|
| 782 |
-
"learning_rate": 0.00016742597799256182,
|
| 783 |
-
"loss": 0.928,
|
| 784 |
-
"step": 105
|
| 785 |
-
},
|
| 786 |
-
{
|
| 787 |
-
"epoch": 1.13,
|
| 788 |
-
"grad_norm": 0.4055944986440079,
|
| 789 |
-
"learning_rate": 0.00016678432915066488,
|
| 790 |
-
"loss": 0.9074,
|
| 791 |
-
"step": 106
|
| 792 |
-
},
|
| 793 |
-
{
|
| 794 |
-
"epoch": 1.14,
|
| 795 |
-
"grad_norm": 0.2515177402600531,
|
| 796 |
-
"learning_rate": 0.00016613767813986044,
|
| 797 |
-
"loss": 0.9564,
|
| 798 |
-
"step": 107
|
| 799 |
-
},
|
| 800 |
-
{
|
| 801 |
-
"epoch": 1.15,
|
| 802 |
-
"grad_norm": 0.2571149695502646,
|
| 803 |
-
"learning_rate": 0.00016548607339452853,
|
| 804 |
-
"loss": 0.93,
|
| 805 |
-
"step": 108
|
| 806 |
-
},
|
| 807 |
-
{
|
| 808 |
-
"epoch": 1.16,
|
| 809 |
-
"grad_norm": 0.38608942941048996,
|
| 810 |
-
"learning_rate": 0.0001648295637200856,
|
| 811 |
-
"loss": 0.9281,
|
| 812 |
-
"step": 109
|
| 813 |
-
},
|
| 814 |
-
{
|
| 815 |
-
"epoch": 1.17,
|
| 816 |
-
"grad_norm": 0.31939838976976676,
|
| 817 |
-
"learning_rate": 0.000164168198289329,
|
| 818 |
-
"loss": 0.9914,
|
| 819 |
-
"step": 110
|
| 820 |
-
},
|
| 821 |
-
{
|
| 822 |
-
"epoch": 1.19,
|
| 823 |
-
"grad_norm": 0.30504937567650897,
|
| 824 |
-
"learning_rate": 0.00016350202663875386,
|
| 825 |
-
"loss": 0.9549,
|
| 826 |
-
"step": 111
|
| 827 |
-
},
|
| 828 |
-
{
|
| 829 |
-
"epoch": 1.2,
|
| 830 |
-
"grad_norm": 0.3320388344291162,
|
| 831 |
-
"learning_rate": 0.0001628310986648427,
|
| 832 |
-
"loss": 0.9086,
|
| 833 |
-
"step": 112
|
| 834 |
-
},
|
| 835 |
-
{
|
| 836 |
-
"epoch": 1.21,
|
| 837 |
-
"grad_norm": 0.27715569151296165,
|
| 838 |
-
"learning_rate": 0.0001621554646203284,
|
| 839 |
-
"loss": 0.8537,
|
| 840 |
-
"step": 113
|
| 841 |
-
},
|
| 842 |
-
{
|
| 843 |
-
"epoch": 1.22,
|
| 844 |
-
"grad_norm": 0.278787508566418,
|
| 845 |
-
"learning_rate": 0.0001614751751104301,
|
| 846 |
-
"loss": 0.9354,
|
| 847 |
-
"step": 114
|
| 848 |
-
},
|
| 849 |
-
{
|
| 850 |
-
"epoch": 1.23,
|
| 851 |
-
"grad_norm": 0.24483614460003267,
|
| 852 |
-
"learning_rate": 0.00016079028108906282,
|
| 853 |
-
"loss": 0.8996,
|
| 854 |
-
"step": 115
|
| 855 |
-
},
|
| 856 |
-
{
|
| 857 |
-
"epoch": 1.24,
|
| 858 |
-
"grad_norm": 0.37520609596400134,
|
| 859 |
-
"learning_rate": 0.0001601008338550211,
|
| 860 |
-
"loss": 0.9514,
|
| 861 |
-
"step": 116
|
| 862 |
-
},
|
| 863 |
-
{
|
| 864 |
-
"epoch": 1.25,
|
| 865 |
-
"grad_norm": 0.2565631505653599,
|
| 866 |
-
"learning_rate": 0.00015940688504813662,
|
| 867 |
-
"loss": 0.8984,
|
| 868 |
-
"step": 117
|
| 869 |
-
},
|
| 870 |
-
{
|
| 871 |
-
"epoch": 1.26,
|
| 872 |
-
"grad_norm": 0.26348552476529935,
|
| 873 |
-
"learning_rate": 0.00015870848664541044,
|
| 874 |
-
"loss": 0.8941,
|
| 875 |
-
"step": 118
|
| 876 |
-
},
|
| 877 |
-
{
|
| 878 |
-
"epoch": 1.27,
|
| 879 |
-
"grad_norm": 0.32431198985496534,
|
| 880 |
-
"learning_rate": 0.00015800569095711982,
|
| 881 |
-
"loss": 0.8876,
|
| 882 |
-
"step": 119
|
| 883 |
-
},
|
| 884 |
-
{
|
| 885 |
-
"epoch": 1.28,
|
| 886 |
-
"grad_norm": 0.29308039763069227,
|
| 887 |
-
"learning_rate": 0.00015729855062290022,
|
| 888 |
-
"loss": 0.9309,
|
| 889 |
-
"step": 120
|
| 890 |
-
},
|
| 891 |
-
{
|
| 892 |
-
"epoch": 1.28,
|
| 893 |
-
"eval_loss": 1.129751205444336,
|
| 894 |
-
"eval_runtime": 119.1497,
|
| 895 |
-
"eval_samples_per_second": 8.384,
|
| 896 |
-
"eval_steps_per_second": 0.529,
|
| 897 |
-
"step": 120
|
| 898 |
-
},
|
| 899 |
-
{
|
| 900 |
-
"epoch": 1.29,
|
| 901 |
-
"grad_norm": 0.2793291380060977,
|
| 902 |
-
"learning_rate": 0.0001565871186078025,
|
| 903 |
-
"loss": 0.9453,
|
| 904 |
-
"step": 121
|
| 905 |
-
},
|
| 906 |
-
{
|
| 907 |
-
"epoch": 1.3,
|
| 908 |
-
"grad_norm": 0.28873644301555734,
|
| 909 |
-
"learning_rate": 0.000155871448198326,
|
| 910 |
-
"loss": 0.9243,
|
| 911 |
-
"step": 122
|
| 912 |
-
},
|
| 913 |
-
{
|
| 914 |
-
"epoch": 1.31,
|
| 915 |
-
"grad_norm": 0.3086103724578039,
|
| 916 |
-
"learning_rate": 0.00015515159299842707,
|
| 917 |
-
"loss": 0.8877,
|
| 918 |
-
"step": 123
|
| 919 |
-
},
|
| 920 |
-
{
|
| 921 |
-
"epoch": 1.32,
|
| 922 |
-
"grad_norm": 0.30407892484693505,
|
| 923 |
-
"learning_rate": 0.00015442760692550443,
|
| 924 |
-
"loss": 0.9448,
|
| 925 |
-
"step": 124
|
| 926 |
-
},
|
| 927 |
-
{
|
| 928 |
-
"epoch": 1.33,
|
| 929 |
-
"grad_norm": 0.29771602861368474,
|
| 930 |
-
"learning_rate": 0.00015369954420636048,
|
| 931 |
-
"loss": 0.889,
|
| 932 |
-
"step": 125
|
| 933 |
-
},
|
| 934 |
-
{
|
| 935 |
-
"epoch": 1.35,
|
| 936 |
-
"grad_norm": 0.30480490158838136,
|
| 937 |
-
"learning_rate": 0.00015296745937313987,
|
| 938 |
-
"loss": 0.9405,
|
| 939 |
-
"step": 126
|
| 940 |
-
},
|
| 941 |
-
{
|
| 942 |
-
"epoch": 1.36,
|
| 943 |
-
"grad_norm": 0.2949192855418127,
|
| 944 |
-
"learning_rate": 0.00015223140725924495,
|
| 945 |
-
"loss": 0.9382,
|
| 946 |
-
"step": 127
|
| 947 |
-
},
|
| 948 |
-
{
|
| 949 |
-
"epoch": 1.37,
|
| 950 |
-
"grad_norm": 0.2813631863132807,
|
| 951 |
-
"learning_rate": 0.00015149144299522873,
|
| 952 |
-
"loss": 0.9526,
|
| 953 |
-
"step": 128
|
| 954 |
-
},
|
| 955 |
-
{
|
| 956 |
-
"epoch": 1.38,
|
| 957 |
-
"grad_norm": 0.28548924064070513,
|
| 958 |
-
"learning_rate": 0.00015074762200466556,
|
| 959 |
-
"loss": 0.9174,
|
| 960 |
-
"step": 129
|
| 961 |
-
},
|
| 962 |
-
{
|
| 963 |
-
"epoch": 1.39,
|
| 964 |
-
"grad_norm": 0.28137053449960464,
|
| 965 |
-
"learning_rate": 0.00015000000000000001,
|
| 966 |
-
"loss": 0.9244,
|
| 967 |
-
"step": 130
|
| 968 |
-
},
|
| 969 |
-
{
|
| 970 |
-
"epoch": 1.4,
|
| 971 |
-
"grad_norm": 0.2626750895717777,
|
| 972 |
-
"learning_rate": 0.00014924863297837378,
|
| 973 |
-
"loss": 0.9335,
|
| 974 |
-
"step": 131
|
| 975 |
-
},
|
| 976 |
-
{
|
| 977 |
-
"epoch": 1.41,
|
| 978 |
-
"grad_norm": 0.26686502371015536,
|
| 979 |
-
"learning_rate": 0.00014849357721743168,
|
| 980 |
-
"loss": 0.8948,
|
| 981 |
-
"step": 132
|
| 982 |
-
},
|
| 983 |
-
{
|
| 984 |
-
"epoch": 1.42,
|
| 985 |
-
"grad_norm": 0.3332273481179679,
|
| 986 |
-
"learning_rate": 0.00014773488927110633,
|
| 987 |
-
"loss": 0.9274,
|
| 988 |
-
"step": 133
|
| 989 |
-
},
|
| 990 |
-
{
|
| 991 |
-
"epoch": 1.43,
|
| 992 |
-
"grad_norm": 0.2528048763375234,
|
| 993 |
-
"learning_rate": 0.00014697262596538227,
|
| 994 |
-
"loss": 0.8731,
|
| 995 |
-
"step": 134
|
| 996 |
-
},
|
| 997 |
-
{
|
| 998 |
-
"epoch": 1.44,
|
| 999 |
-
"grad_norm": 0.27184211707488076,
|
| 1000 |
-
"learning_rate": 0.00014620684439403962,
|
| 1001 |
-
"loss": 0.9318,
|
| 1002 |
-
"step": 135
|
| 1003 |
-
},
|
| 1004 |
-
{
|
| 1005 |
-
"epoch": 1.45,
|
| 1006 |
-
"grad_norm": 0.3051111137538683,
|
| 1007 |
-
"learning_rate": 0.0001454376019143779,
|
| 1008 |
-
"loss": 0.9447,
|
| 1009 |
-
"step": 136
|
| 1010 |
-
},
|
| 1011 |
-
{
|
| 1012 |
-
"epoch": 1.46,
|
| 1013 |
-
"grad_norm": 0.28771401659835155,
|
| 1014 |
-
"learning_rate": 0.00014466495614291977,
|
| 1015 |
-
"loss": 0.9343,
|
| 1016 |
-
"step": 137
|
| 1017 |
-
},
|
| 1018 |
-
{
|
| 1019 |
-
"epoch": 1.47,
|
| 1020 |
-
"grad_norm": 0.28995797921621524,
|
| 1021 |
-
"learning_rate": 0.0001438889649510956,
|
| 1022 |
-
"loss": 0.8978,
|
| 1023 |
-
"step": 138
|
| 1024 |
-
},
|
| 1025 |
-
{
|
| 1026 |
-
"epoch": 1.48,
|
| 1027 |
-
"grad_norm": 0.2749930548874636,
|
| 1028 |
-
"learning_rate": 0.00014310968646090883,
|
| 1029 |
-
"loss": 0.924,
|
| 1030 |
-
"step": 139
|
| 1031 |
-
},
|
| 1032 |
-
{
|
| 1033 |
-
"epoch": 1.49,
|
| 1034 |
-
"grad_norm": 0.3097189537380989,
|
| 1035 |
-
"learning_rate": 0.0001423271790405828,
|
| 1036 |
-
"loss": 0.9574,
|
| 1037 |
-
"step": 140
|
| 1038 |
-
},
|
| 1039 |
-
{
|
| 1040 |
-
"epoch": 1.51,
|
| 1041 |
-
"grad_norm": 0.2449218990319832,
|
| 1042 |
-
"learning_rate": 0.00014154150130018866,
|
| 1043 |
-
"loss": 0.8475,
|
| 1044 |
-
"step": 141
|
| 1045 |
-
},
|
| 1046 |
-
{
|
| 1047 |
-
"epoch": 1.52,
|
| 1048 |
-
"grad_norm": 0.24856388098419674,
|
| 1049 |
-
"learning_rate": 0.0001407527120872557,
|
| 1050 |
-
"loss": 0.9381,
|
| 1051 |
-
"step": 142
|
| 1052 |
-
},
|
| 1053 |
-
{
|
| 1054 |
-
"epoch": 1.53,
|
| 1055 |
-
"grad_norm": 0.3169861882853132,
|
| 1056 |
-
"learning_rate": 0.00013996087048236358,
|
| 1057 |
-
"loss": 0.9141,
|
| 1058 |
-
"step": 143
|
| 1059 |
-
},
|
| 1060 |
-
{
|
| 1061 |
-
"epoch": 1.54,
|
| 1062 |
-
"grad_norm": 0.30689184261103974,
|
| 1063 |
-
"learning_rate": 0.00013916603579471705,
|
| 1064 |
-
"loss": 0.9588,
|
| 1065 |
-
"step": 144
|
| 1066 |
-
},
|
| 1067 |
-
{
|
| 1068 |
-
"epoch": 1.54,
|
| 1069 |
-
"eval_loss": 1.1242448091506958,
|
| 1070 |
-
"eval_runtime": 119.0725,
|
| 1071 |
-
"eval_samples_per_second": 8.39,
|
| 1072 |
-
"eval_steps_per_second": 0.529,
|
| 1073 |
-
"step": 144
|
| 1074 |
-
},
|
| 1075 |
-
{
|
| 1076 |
-
"epoch": 1.55,
|
| 1077 |
-
"grad_norm": 0.2961514212977567,
|
| 1078 |
-
"learning_rate": 0.00013836826755770384,
|
| 1079 |
-
"loss": 0.9371,
|
| 1080 |
-
"step": 145
|
| 1081 |
-
},
|
| 1082 |
-
{
|
| 1083 |
-
"epoch": 1.56,
|
| 1084 |
-
"grad_norm": 0.30790856503439346,
|
| 1085 |
-
"learning_rate": 0.00013756762552443553,
|
| 1086 |
-
"loss": 0.9612,
|
| 1087 |
-
"step": 146
|
| 1088 |
-
},
|
| 1089 |
-
{
|
| 1090 |
-
"epoch": 1.57,
|
| 1091 |
-
"grad_norm": 0.3517398492864053,
|
| 1092 |
-
"learning_rate": 0.000136764169663272,
|
| 1093 |
-
"loss": 0.9253,
|
| 1094 |
-
"step": 147
|
| 1095 |
-
},
|
| 1096 |
-
{
|
| 1097 |
-
"epoch": 1.58,
|
| 1098 |
-
"grad_norm": 0.26375798832515857,
|
| 1099 |
-
"learning_rate": 0.00013595796015332984,
|
| 1100 |
-
"loss": 0.8977,
|
| 1101 |
-
"step": 148
|
| 1102 |
-
},
|
| 1103 |
-
{
|
| 1104 |
-
"epoch": 1.59,
|
| 1105 |
-
"grad_norm": 0.274348892672977,
|
| 1106 |
-
"learning_rate": 0.00013514905737997473,
|
| 1107 |
-
"loss": 0.8817,
|
| 1108 |
-
"step": 149
|
| 1109 |
-
},
|
| 1110 |
-
{
|
| 1111 |
-
"epoch": 1.6,
|
| 1112 |
-
"grad_norm": 0.35917564750751624,
|
| 1113 |
-
"learning_rate": 0.00013433752193029886,
|
| 1114 |
-
"loss": 0.886,
|
| 1115 |
-
"step": 150
|
| 1116 |
-
},
|
| 1117 |
-
{
|
| 1118 |
-
"epoch": 1.61,
|
| 1119 |
-
"grad_norm": 0.38175124377914293,
|
| 1120 |
-
"learning_rate": 0.00013352341458858265,
|
| 1121 |
-
"loss": 0.8576,
|
| 1122 |
-
"step": 151
|
| 1123 |
-
},
|
| 1124 |
-
{
|
| 1125 |
-
"epoch": 1.62,
|
| 1126 |
-
"grad_norm": 0.249633953215678,
|
| 1127 |
-
"learning_rate": 0.00013270679633174218,
|
| 1128 |
-
"loss": 1.0066,
|
| 1129 |
-
"step": 152
|
| 1130 |
-
},
|
| 1131 |
-
{
|
| 1132 |
-
"epoch": 1.63,
|
| 1133 |
-
"grad_norm": 0.33494494430574784,
|
| 1134 |
-
"learning_rate": 0.00013188772832476188,
|
| 1135 |
-
"loss": 0.884,
|
| 1136 |
-
"step": 153
|
| 1137 |
-
},
|
| 1138 |
-
{
|
| 1139 |
-
"epoch": 1.64,
|
| 1140 |
-
"grad_norm": 0.4176467296744032,
|
| 1141 |
-
"learning_rate": 0.00013106627191611332,
|
| 1142 |
-
"loss": 0.9041,
|
| 1143 |
-
"step": 154
|
| 1144 |
-
},
|
| 1145 |
-
{
|
| 1146 |
-
"epoch": 1.65,
|
| 1147 |
-
"grad_norm": 0.27051479454532207,
|
| 1148 |
-
"learning_rate": 0.00013024248863316012,
|
| 1149 |
-
"loss": 0.8764,
|
| 1150 |
-
"step": 155
|
| 1151 |
-
},
|
| 1152 |
-
{
|
| 1153 |
-
"epoch": 1.67,
|
| 1154 |
-
"grad_norm": 0.29302599029848847,
|
| 1155 |
-
"learning_rate": 0.00012941644017754964,
|
| 1156 |
-
"loss": 0.9786,
|
| 1157 |
-
"step": 156
|
| 1158 |
-
},
|
| 1159 |
-
{
|
| 1160 |
-
"epoch": 1.68,
|
| 1161 |
-
"grad_norm": 0.3127378512248151,
|
| 1162 |
-
"learning_rate": 0.00012858818842059145,
|
| 1163 |
-
"loss": 0.9176,
|
| 1164 |
-
"step": 157
|
| 1165 |
-
},
|
| 1166 |
-
{
|
| 1167 |
-
"epoch": 1.69,
|
| 1168 |
-
"grad_norm": 0.40647077063662906,
|
| 1169 |
-
"learning_rate": 0.00012775779539862304,
|
| 1170 |
-
"loss": 0.9387,
|
| 1171 |
-
"step": 158
|
| 1172 |
-
},
|
| 1173 |
-
{
|
| 1174 |
-
"epoch": 1.7,
|
| 1175 |
-
"grad_norm": 0.29290601694481777,
|
| 1176 |
-
"learning_rate": 0.00012692532330836346,
|
| 1177 |
-
"loss": 0.9192,
|
| 1178 |
-
"step": 159
|
| 1179 |
-
},
|
| 1180 |
-
{
|
| 1181 |
-
"epoch": 1.71,
|
| 1182 |
-
"grad_norm": 0.2819168741245354,
|
| 1183 |
-
"learning_rate": 0.0001260908345022547,
|
| 1184 |
-
"loss": 0.9253,
|
| 1185 |
-
"step": 160
|
| 1186 |
-
},
|
| 1187 |
-
{
|
| 1188 |
-
"epoch": 1.72,
|
| 1189 |
-
"grad_norm": 0.3772714091394927,
|
| 1190 |
-
"learning_rate": 0.00012525439148379128,
|
| 1191 |
-
"loss": 0.9264,
|
| 1192 |
-
"step": 161
|
| 1193 |
-
},
|
| 1194 |
-
{
|
| 1195 |
-
"epoch": 1.73,
|
| 1196 |
-
"grad_norm": 0.29399851067321503,
|
| 1197 |
-
"learning_rate": 0.00012441605690283915,
|
| 1198 |
-
"loss": 0.9357,
|
| 1199 |
-
"step": 162
|
| 1200 |
-
},
|
| 1201 |
-
{
|
| 1202 |
-
"epoch": 1.74,
|
| 1203 |
-
"grad_norm": 0.2623180246832513,
|
| 1204 |
-
"learning_rate": 0.00012357589355094275,
|
| 1205 |
-
"loss": 0.8516,
|
| 1206 |
-
"step": 163
|
| 1207 |
-
},
|
| 1208 |
-
{
|
| 1209 |
-
"epoch": 1.75,
|
| 1210 |
-
"grad_norm": 0.27796942024085824,
|
| 1211 |
-
"learning_rate": 0.00012273396435662212,
|
| 1212 |
-
"loss": 0.9328,
|
| 1213 |
-
"step": 164
|
| 1214 |
-
},
|
| 1215 |
-
{
|
| 1216 |
-
"epoch": 1.76,
|
| 1217 |
-
"grad_norm": 0.3107670297529076,
|
| 1218 |
-
"learning_rate": 0.0001218903323806595,
|
| 1219 |
-
"loss": 0.8769,
|
| 1220 |
-
"step": 165
|
| 1221 |
-
},
|
| 1222 |
-
{
|
| 1223 |
-
"epoch": 1.77,
|
| 1224 |
-
"grad_norm": 0.2865573350738354,
|
| 1225 |
-
"learning_rate": 0.00012104506081137608,
|
| 1226 |
-
"loss": 0.9015,
|
| 1227 |
-
"step": 166
|
| 1228 |
-
},
|
| 1229 |
-
{
|
| 1230 |
-
"epoch": 1.78,
|
| 1231 |
-
"grad_norm": 0.30595087117636693,
|
| 1232 |
-
"learning_rate": 0.00012019821295989912,
|
| 1233 |
-
"loss": 0.94,
|
| 1234 |
-
"step": 167
|
| 1235 |
-
},
|
| 1236 |
-
{
|
| 1237 |
-
"epoch": 1.79,
|
| 1238 |
-
"grad_norm": 0.32540365653257874,
|
| 1239 |
-
"learning_rate": 0.00011934985225541998,
|
| 1240 |
-
"loss": 0.8553,
|
| 1241 |
-
"step": 168
|
| 1242 |
-
},
|
| 1243 |
-
{
|
| 1244 |
-
"epoch": 1.79,
|
| 1245 |
-
"eval_loss": 1.1259374618530273,
|
| 1246 |
-
"eval_runtime": 119.4351,
|
| 1247 |
-
"eval_samples_per_second": 8.364,
|
| 1248 |
-
"eval_steps_per_second": 0.527,
|
| 1249 |
-
"step": 168
|
| 1250 |
-
},
|
| 1251 |
-
{
|
| 1252 |
-
"epoch": 1.8,
|
| 1253 |
-
"grad_norm": 0.3058868303314457,
|
| 1254 |
-
"learning_rate": 0.00011850004224044315,
|
| 1255 |
-
"loss": 0.9074,
|
| 1256 |
-
"step": 169
|
| 1257 |
-
},
|
| 1258 |
-
{
|
| 1259 |
-
"epoch": 1.81,
|
| 1260 |
-
"grad_norm": 0.33266760488242775,
|
| 1261 |
-
"learning_rate": 0.0001176488465660271,
|
| 1262 |
-
"loss": 0.8799,
|
| 1263 |
-
"step": 170
|
| 1264 |
-
},
|
| 1265 |
-
{
|
| 1266 |
-
"epoch": 1.83,
|
| 1267 |
-
"grad_norm": 0.3101183375673487,
|
| 1268 |
-
"learning_rate": 0.00011679632898701649,
|
| 1269 |
-
"loss": 0.9004,
|
| 1270 |
-
"step": 171
|
| 1271 |
-
},
|
| 1272 |
-
{
|
| 1273 |
-
"epoch": 1.84,
|
| 1274 |
-
"grad_norm": 0.31535579418195775,
|
| 1275 |
-
"learning_rate": 0.00011594255335726724,
|
| 1276 |
-
"loss": 0.9238,
|
| 1277 |
-
"step": 172
|
| 1278 |
-
},
|
| 1279 |
-
{
|
| 1280 |
-
"epoch": 1.85,
|
| 1281 |
-
"grad_norm": 0.28341827112854334,
|
| 1282 |
-
"learning_rate": 0.00011508758362486358,
|
| 1283 |
-
"loss": 0.9138,
|
| 1284 |
-
"step": 173
|
| 1285 |
-
},
|
| 1286 |
-
{
|
| 1287 |
-
"epoch": 1.86,
|
| 1288 |
-
"grad_norm": 0.25699888796695625,
|
| 1289 |
-
"learning_rate": 0.00011423148382732853,
|
| 1290 |
-
"loss": 0.9175,
|
| 1291 |
-
"step": 174
|
| 1292 |
-
},
|
| 1293 |
-
{
|
| 1294 |
-
"epoch": 1.87,
|
| 1295 |
-
"grad_norm": 0.29504332662698246,
|
| 1296 |
-
"learning_rate": 0.0001133743180868273,
|
| 1297 |
-
"loss": 0.9023,
|
| 1298 |
-
"step": 175
|
| 1299 |
-
},
|
| 1300 |
-
{
|
| 1301 |
-
"epoch": 1.88,
|
| 1302 |
-
"grad_norm": 0.2993175263873948,
|
| 1303 |
-
"learning_rate": 0.0001125161506053646,
|
| 1304 |
-
"loss": 0.8893,
|
| 1305 |
-
"step": 176
|
| 1306 |
-
},
|
| 1307 |
-
{
|
| 1308 |
-
"epoch": 1.89,
|
| 1309 |
-
"grad_norm": 0.2762659379409218,
|
| 1310 |
-
"learning_rate": 0.00011165704565997593,
|
| 1311 |
-
"loss": 0.9071,
|
| 1312 |
-
"step": 177
|
| 1313 |
-
},
|
| 1314 |
-
{
|
| 1315 |
-
"epoch": 1.9,
|
| 1316 |
-
"grad_norm": 0.23620994229530515,
|
| 1317 |
-
"learning_rate": 0.00011079706759791311,
|
| 1318 |
-
"loss": 0.8796,
|
| 1319 |
-
"step": 178
|
| 1320 |
-
},
|
| 1321 |
-
{
|
| 1322 |
-
"epoch": 1.91,
|
| 1323 |
-
"grad_norm": 0.28317619721877,
|
| 1324 |
-
"learning_rate": 0.00010993628083182467,
|
| 1325 |
-
"loss": 0.8983,
|
| 1326 |
-
"step": 179
|
| 1327 |
-
},
|
| 1328 |
-
{
|
| 1329 |
-
"epoch": 1.92,
|
| 1330 |
-
"grad_norm": 0.3252854551640304,
|
| 1331 |
-
"learning_rate": 0.00010907474983493144,
|
| 1332 |
-
"loss": 0.8947,
|
| 1333 |
-
"step": 180
|
| 1334 |
-
},
|
| 1335 |
-
{
|
| 1336 |
-
"epoch": 1.93,
|
| 1337 |
-
"grad_norm": 0.2579136274422669,
|
| 1338 |
-
"learning_rate": 0.00010821253913619726,
|
| 1339 |
-
"loss": 0.8726,
|
| 1340 |
-
"step": 181
|
| 1341 |
-
},
|
| 1342 |
-
{
|
| 1343 |
-
"epoch": 1.94,
|
| 1344 |
-
"grad_norm": 0.27201912720918364,
|
| 1345 |
-
"learning_rate": 0.00010734971331549603,
|
| 1346 |
-
"loss": 0.891,
|
| 1347 |
-
"step": 182
|
| 1348 |
-
},
|
| 1349 |
-
{
|
| 1350 |
-
"epoch": 1.95,
|
| 1351 |
-
"grad_norm": 0.41257277193589503,
|
| 1352 |
-
"learning_rate": 0.0001064863369987743,
|
| 1353 |
-
"loss": 0.9188,
|
| 1354 |
-
"step": 183
|
| 1355 |
-
},
|
| 1356 |
-
{
|
| 1357 |
-
"epoch": 1.96,
|
| 1358 |
-
"grad_norm": 0.264920112831242,
|
| 1359 |
-
"learning_rate": 0.00010562247485321115,
|
| 1360 |
-
"loss": 0.8761,
|
| 1361 |
-
"step": 184
|
| 1362 |
-
},
|
| 1363 |
-
{
|
| 1364 |
-
"epoch": 1.98,
|
| 1365 |
-
"grad_norm": 0.28166441056422037,
|
| 1366 |
-
"learning_rate": 0.00010475819158237425,
|
| 1367 |
-
"loss": 0.8805,
|
| 1368 |
-
"step": 185
|
| 1369 |
-
},
|
| 1370 |
-
{
|
| 1371 |
-
"epoch": 1.99,
|
| 1372 |
-
"grad_norm": 0.2818961139392159,
|
| 1373 |
-
"learning_rate": 0.00010389355192137377,
|
| 1374 |
-
"loss": 0.8934,
|
| 1375 |
-
"step": 186
|
| 1376 |
-
},
|
| 1377 |
-
{
|
| 1378 |
-
"epoch": 2.0,
|
| 1379 |
-
"grad_norm": 0.27424787600345923,
|
| 1380 |
-
"learning_rate": 0.00010302862063201367,
|
| 1381 |
-
"loss": 0.9237,
|
| 1382 |
-
"step": 187
|
| 1383 |
-
},
|
| 1384 |
-
{
|
| 1385 |
-
"epoch": 2.01,
|
| 1386 |
-
"grad_norm": 0.25570082666079225,
|
| 1387 |
-
"learning_rate": 0.00010216346249794087,
|
| 1388 |
-
"loss": 0.8656,
|
| 1389 |
-
"step": 188
|
| 1390 |
-
},
|
| 1391 |
-
{
|
| 1392 |
-
"epoch": 2.02,
|
| 1393 |
-
"grad_norm": 0.2712359904481713,
|
| 1394 |
-
"learning_rate": 0.0001012981423197931,
|
| 1395 |
-
"loss": 0.7627,
|
| 1396 |
-
"step": 189
|
| 1397 |
-
},
|
| 1398 |
-
{
|
| 1399 |
-
"epoch": 2.03,
|
| 1400 |
-
"grad_norm": 0.25054404547068676,
|
| 1401 |
-
"learning_rate": 0.00010043272491034523,
|
| 1402 |
-
"loss": 0.8142,
|
| 1403 |
-
"step": 190
|
| 1404 |
-
},
|
| 1405 |
-
{
|
| 1406 |
-
"epoch": 2.04,
|
| 1407 |
-
"grad_norm": 0.28520868420260026,
|
| 1408 |
-
"learning_rate": 9.956727508965481e-05,
|
| 1409 |
-
"loss": 0.7953,
|
| 1410 |
-
"step": 191
|
| 1411 |
-
},
|
| 1412 |
-
{
|
| 1413 |
-
"epoch": 2.05,
|
| 1414 |
-
"grad_norm": 0.29413880984694873,
|
| 1415 |
-
"learning_rate": 9.870185768020693e-05,
|
| 1416 |
-
"loss": 0.8231,
|
| 1417 |
-
"step": 192
|
| 1418 |
-
},
|
| 1419 |
-
{
|
| 1420 |
-
"epoch": 2.05,
|
| 1421 |
-
"eval_loss": 1.144862413406372,
|
| 1422 |
-
"eval_runtime": 119.3004,
|
| 1423 |
-
"eval_samples_per_second": 8.374,
|
| 1424 |
-
"eval_steps_per_second": 0.528,
|
| 1425 |
-
"step": 192
|
| 1426 |
-
},
|
| 1427 |
-
{
|
| 1428 |
-
"epoch": 2.06,
|
| 1429 |
-
"grad_norm": 0.28378300985247035,
|
| 1430 |
-
"learning_rate": 9.783653750205915e-05,
|
| 1431 |
-
"loss": 0.7478,
|
| 1432 |
-
"step": 193
|
| 1433 |
-
},
|
| 1434 |
-
{
|
| 1435 |
-
"epoch": 2.07,
|
| 1436 |
-
"grad_norm": 0.31792721348179676,
|
| 1437 |
-
"learning_rate": 9.697137936798634e-05,
|
| 1438 |
-
"loss": 0.7961,
|
| 1439 |
-
"step": 194
|
| 1440 |
-
},
|
| 1441 |
-
{
|
| 1442 |
-
"epoch": 2.08,
|
| 1443 |
-
"grad_norm": 0.3291666436295964,
|
| 1444 |
-
"learning_rate": 9.610644807862625e-05,
|
| 1445 |
-
"loss": 0.7434,
|
| 1446 |
-
"step": 195
|
| 1447 |
-
},
|
| 1448 |
-
{
|
| 1449 |
-
"epoch": 2.09,
|
| 1450 |
-
"grad_norm": 0.301579259001567,
|
| 1451 |
-
"learning_rate": 9.524180841762577e-05,
|
| 1452 |
-
"loss": 0.7779,
|
| 1453 |
-
"step": 196
|
| 1454 |
-
},
|
| 1455 |
-
{
|
| 1456 |
-
"epoch": 2.1,
|
| 1457 |
-
"grad_norm": 0.30252161240414444,
|
| 1458 |
-
"learning_rate": 9.437752514678887e-05,
|
| 1459 |
-
"loss": 0.7689,
|
| 1460 |
-
"step": 197
|
| 1461 |
-
},
|
| 1462 |
-
{
|
| 1463 |
-
"epoch": 2.11,
|
| 1464 |
-
"grad_norm": 0.3350657085129171,
|
| 1465 |
-
"learning_rate": 9.35136630012257e-05,
|
| 1466 |
-
"loss": 0.7574,
|
| 1467 |
-
"step": 198
|
| 1468 |
-
},
|
| 1469 |
-
{
|
| 1470 |
-
"epoch": 2.12,
|
| 1471 |
-
"grad_norm": 0.3053109929956358,
|
| 1472 |
-
"learning_rate": 9.265028668450402e-05,
|
| 1473 |
-
"loss": 0.7729,
|
| 1474 |
-
"step": 199
|
| 1475 |
-
},
|
| 1476 |
-
{
|
| 1477 |
-
"epoch": 2.14,
|
| 1478 |
-
"grad_norm": 0.30367223609567207,
|
| 1479 |
-
"learning_rate": 9.178746086380275e-05,
|
| 1480 |
-
"loss": 0.8111,
|
| 1481 |
-
"step": 200
|
| 1482 |
-
},
|
| 1483 |
-
{
|
| 1484 |
-
"epoch": 2.15,
|
| 1485 |
-
"grad_norm": 0.3366440949136126,
|
| 1486 |
-
"learning_rate": 9.092525016506858e-05,
|
| 1487 |
-
"loss": 0.7986,
|
| 1488 |
-
"step": 201
|
| 1489 |
-
},
|
| 1490 |
-
{
|
| 1491 |
-
"epoch": 2.16,
|
| 1492 |
-
"grad_norm": 0.3228036608413652,
|
| 1493 |
-
"learning_rate": 9.006371916817534e-05,
|
| 1494 |
-
"loss": 0.8382,
|
| 1495 |
-
"step": 202
|
| 1496 |
-
},
|
| 1497 |
-
{
|
| 1498 |
-
"epoch": 2.17,
|
| 1499 |
-
"grad_norm": 0.2919040789403488,
|
| 1500 |
-
"learning_rate": 8.920293240208694e-05,
|
| 1501 |
-
"loss": 0.7696,
|
| 1502 |
-
"step": 203
|
| 1503 |
-
},
|
| 1504 |
-
{
|
| 1505 |
-
"epoch": 2.18,
|
| 1506 |
-
"grad_norm": 0.30084198177583166,
|
| 1507 |
-
"learning_rate": 8.83429543400241e-05,
|
| 1508 |
-
"loss": 0.7671,
|
| 1509 |
-
"step": 204
|
| 1510 |
-
},
|
| 1511 |
-
{
|
| 1512 |
-
"epoch": 2.19,
|
| 1513 |
-
"grad_norm": 0.33931609000743107,
|
| 1514 |
-
"learning_rate": 8.748384939463543e-05,
|
| 1515 |
-
"loss": 0.7553,
|
| 1516 |
-
"step": 205
|
| 1517 |
-
},
|
| 1518 |
-
{
|
| 1519 |
-
"epoch": 2.2,
|
| 1520 |
-
"grad_norm": 0.30413284924824485,
|
| 1521 |
-
"learning_rate": 8.662568191317273e-05,
|
| 1522 |
-
"loss": 0.7324,
|
| 1523 |
-
"step": 206
|
| 1524 |
-
},
|
| 1525 |
-
{
|
| 1526 |
-
"epoch": 2.21,
|
| 1527 |
-
"grad_norm": 0.3014038998090481,
|
| 1528 |
-
"learning_rate": 8.57685161726715e-05,
|
| 1529 |
-
"loss": 0.7567,
|
| 1530 |
-
"step": 207
|
| 1531 |
-
},
|
| 1532 |
-
{
|
| 1533 |
-
"epoch": 2.22,
|
| 1534 |
-
"grad_norm": 0.3176466329519527,
|
| 1535 |
-
"learning_rate": 8.491241637513644e-05,
|
| 1536 |
-
"loss": 0.8222,
|
| 1537 |
-
"step": 208
|
| 1538 |
-
},
|
| 1539 |
-
{
|
| 1540 |
-
"epoch": 2.23,
|
| 1541 |
-
"grad_norm": 0.29981213041628285,
|
| 1542 |
-
"learning_rate": 8.405744664273278e-05,
|
| 1543 |
-
"loss": 0.7077,
|
| 1544 |
-
"step": 209
|
| 1545 |
-
},
|
| 1546 |
-
{
|
| 1547 |
-
"epoch": 2.24,
|
| 1548 |
-
"grad_norm": 0.2937916452228122,
|
| 1549 |
-
"learning_rate": 8.320367101298351e-05,
|
| 1550 |
-
"loss": 0.7231,
|
| 1551 |
-
"step": 210
|
| 1552 |
-
},
|
| 1553 |
-
{
|
| 1554 |
-
"epoch": 2.25,
|
| 1555 |
-
"grad_norm": 0.32040684171320816,
|
| 1556 |
-
"learning_rate": 8.235115343397295e-05,
|
| 1557 |
-
"loss": 0.7556,
|
| 1558 |
-
"step": 211
|
| 1559 |
-
},
|
| 1560 |
-
{
|
| 1561 |
-
"epoch": 2.26,
|
| 1562 |
-
"grad_norm": 0.31083028085316033,
|
| 1563 |
-
"learning_rate": 8.149995775955686e-05,
|
| 1564 |
-
"loss": 0.7514,
|
| 1565 |
-
"step": 212
|
| 1566 |
-
},
|
| 1567 |
-
{
|
| 1568 |
-
"epoch": 2.27,
|
| 1569 |
-
"grad_norm": 0.3215465383581194,
|
| 1570 |
-
"learning_rate": 8.065014774458003e-05,
|
| 1571 |
-
"loss": 0.7933,
|
| 1572 |
-
"step": 213
|
| 1573 |
-
},
|
| 1574 |
-
{
|
| 1575 |
-
"epoch": 2.28,
|
| 1576 |
-
"grad_norm": 0.3081200259196015,
|
| 1577 |
-
"learning_rate": 7.980178704010089e-05,
|
| 1578 |
-
"loss": 0.8062,
|
| 1579 |
-
"step": 214
|
| 1580 |
-
},
|
| 1581 |
-
{
|
| 1582 |
-
"epoch": 2.3,
|
| 1583 |
-
"grad_norm": 0.3333248296288759,
|
| 1584 |
-
"learning_rate": 7.895493918862396e-05,
|
| 1585 |
-
"loss": 0.7784,
|
| 1586 |
-
"step": 215
|
| 1587 |
-
},
|
| 1588 |
-
{
|
| 1589 |
-
"epoch": 2.31,
|
| 1590 |
-
"grad_norm": 0.3301326097292383,
|
| 1591 |
-
"learning_rate": 7.810966761934053e-05,
|
| 1592 |
-
"loss": 0.8154,
|
| 1593 |
-
"step": 216
|
| 1594 |
-
},
|
| 1595 |
-
{
|
| 1596 |
-
"epoch": 2.31,
|
| 1597 |
-
"eval_loss": 1.1513652801513672,
|
| 1598 |
-
"eval_runtime": 119.4371,
|
| 1599 |
-
"eval_samples_per_second": 8.364,
|
| 1600 |
-
"eval_steps_per_second": 0.527,
|
| 1601 |
-
"step": 216
|
| 1602 |
-
},
|
| 1603 |
-
{
|
| 1604 |
-
"epoch": 2.32,
|
| 1605 |
-
"grad_norm": 0.3166760836422428,
|
| 1606 |
-
"learning_rate": 7.726603564337791e-05,
|
| 1607 |
-
"loss": 0.7486,
|
| 1608 |
-
"step": 217
|
| 1609 |
-
},
|
| 1610 |
-
{
|
| 1611 |
-
"epoch": 2.33,
|
| 1612 |
-
"grad_norm": 0.31309757318131876,
|
| 1613 |
-
"learning_rate": 7.642410644905726e-05,
|
| 1614 |
-
"loss": 0.771,
|
| 1615 |
-
"step": 218
|
| 1616 |
-
},
|
| 1617 |
-
{
|
| 1618 |
-
"epoch": 2.34,
|
| 1619 |
-
"grad_norm": 0.36968796131043985,
|
| 1620 |
-
"learning_rate": 7.558394309716088e-05,
|
| 1621 |
-
"loss": 0.8051,
|
| 1622 |
-
"step": 219
|
| 1623 |
-
},
|
| 1624 |
-
{
|
| 1625 |
-
"epoch": 2.35,
|
| 1626 |
-
"grad_norm": 0.27537675917328025,
|
| 1627 |
-
"learning_rate": 7.474560851620873e-05,
|
| 1628 |
-
"loss": 0.7536,
|
| 1629 |
-
"step": 220
|
| 1630 |
-
},
|
| 1631 |
-
{
|
| 1632 |
-
"epoch": 2.36,
|
| 1633 |
-
"grad_norm": 0.2878011945022053,
|
| 1634 |
-
"learning_rate": 7.390916549774536e-05,
|
| 1635 |
-
"loss": 0.8126,
|
| 1636 |
-
"step": 221
|
| 1637 |
-
},
|
| 1638 |
-
{
|
| 1639 |
-
"epoch": 2.37,
|
| 1640 |
-
"grad_norm": 0.3172405217395398,
|
| 1641 |
-
"learning_rate": 7.307467669163655e-05,
|
| 1642 |
-
"loss": 0.8156,
|
| 1643 |
-
"step": 222
|
| 1644 |
-
},
|
| 1645 |
-
{
|
| 1646 |
-
"epoch": 2.38,
|
| 1647 |
-
"grad_norm": 0.3183651086957915,
|
| 1648 |
-
"learning_rate": 7.224220460137701e-05,
|
| 1649 |
-
"loss": 0.7821,
|
| 1650 |
-
"step": 223
|
| 1651 |
-
},
|
| 1652 |
-
{
|
| 1653 |
-
"epoch": 2.39,
|
| 1654 |
-
"grad_norm": 0.3318078467573977,
|
| 1655 |
-
"learning_rate": 7.141181157940859e-05,
|
| 1656 |
-
"loss": 0.7993,
|
| 1657 |
-
"step": 224
|
| 1658 |
-
},
|
| 1659 |
-
{
|
| 1660 |
-
"epoch": 2.4,
|
| 1661 |
-
"grad_norm": 0.28446170407344085,
|
| 1662 |
-
"learning_rate": 7.058355982245037e-05,
|
| 1663 |
-
"loss": 0.7987,
|
| 1664 |
-
"step": 225
|
| 1665 |
-
},
|
| 1666 |
-
{
|
| 1667 |
-
"epoch": 2.41,
|
| 1668 |
-
"grad_norm": 0.33568352702219995,
|
| 1669 |
-
"learning_rate": 6.97575113668399e-05,
|
| 1670 |
-
"loss": 0.773,
|
| 1671 |
-
"step": 226
|
| 1672 |
-
},
|
| 1673 |
-
{
|
| 1674 |
-
"epoch": 2.42,
|
| 1675 |
-
"grad_norm": 0.30820575901544944,
|
| 1676 |
-
"learning_rate": 6.893372808388675e-05,
|
| 1677 |
-
"loss": 0.813,
|
| 1678 |
-
"step": 227
|
| 1679 |
-
},
|
| 1680 |
-
{
|
| 1681 |
-
"epoch": 2.43,
|
| 1682 |
-
"grad_norm": 0.3121364386024255,
|
| 1683 |
-
"learning_rate": 6.811227167523815e-05,
|
| 1684 |
-
"loss": 0.7716,
|
| 1685 |
-
"step": 228
|
| 1686 |
-
},
|
| 1687 |
-
{
|
| 1688 |
-
"epoch": 2.44,
|
| 1689 |
-
"grad_norm": 0.3211455560922844,
|
| 1690 |
-
"learning_rate": 6.729320366825784e-05,
|
| 1691 |
-
"loss": 0.7577,
|
| 1692 |
-
"step": 229
|
| 1693 |
-
},
|
| 1694 |
-
{
|
| 1695 |
-
"epoch": 2.46,
|
| 1696 |
-
"grad_norm": 0.3315601260165869,
|
| 1697 |
-
"learning_rate": 6.647658541141735e-05,
|
| 1698 |
-
"loss": 0.779,
|
| 1699 |
-
"step": 230
|
| 1700 |
-
},
|
| 1701 |
-
{
|
| 1702 |
-
"epoch": 2.47,
|
| 1703 |
-
"grad_norm": 0.35482236759964675,
|
| 1704 |
-
"learning_rate": 6.566247806970119e-05,
|
| 1705 |
-
"loss": 0.7936,
|
| 1706 |
-
"step": 231
|
| 1707 |
-
},
|
| 1708 |
-
{
|
| 1709 |
-
"epoch": 2.48,
|
| 1710 |
-
"grad_norm": 0.3318703205331905,
|
| 1711 |
-
"learning_rate": 6.485094262002529e-05,
|
| 1712 |
-
"loss": 0.7721,
|
| 1713 |
-
"step": 232
|
| 1714 |
-
},
|
| 1715 |
-
{
|
| 1716 |
-
"epoch": 2.49,
|
| 1717 |
-
"grad_norm": 0.313412585518615,
|
| 1718 |
-
"learning_rate": 6.404203984667019e-05,
|
| 1719 |
-
"loss": 0.7333,
|
| 1720 |
-
"step": 233
|
| 1721 |
-
},
|
| 1722 |
-
{
|
| 1723 |
-
"epoch": 2.5,
|
| 1724 |
-
"grad_norm": 0.3389693444254627,
|
| 1725 |
-
"learning_rate": 6.323583033672799e-05,
|
| 1726 |
-
"loss": 0.6991,
|
| 1727 |
-
"step": 234
|
| 1728 |
-
},
|
| 1729 |
-
{
|
| 1730 |
-
"epoch": 2.51,
|
| 1731 |
-
"grad_norm": 0.33056782619334757,
|
| 1732 |
-
"learning_rate": 6.243237447556449e-05,
|
| 1733 |
-
"loss": 0.7872,
|
| 1734 |
-
"step": 235
|
| 1735 |
-
},
|
| 1736 |
-
{
|
| 1737 |
-
"epoch": 2.52,
|
| 1738 |
-
"grad_norm": 0.3064085209522584,
|
| 1739 |
-
"learning_rate": 6.163173244229619e-05,
|
| 1740 |
-
"loss": 0.7713,
|
| 1741 |
-
"step": 236
|
| 1742 |
-
},
|
| 1743 |
-
{
|
| 1744 |
-
"epoch": 2.53,
|
| 1745 |
-
"grad_norm": 0.3109445125421656,
|
| 1746 |
-
"learning_rate": 6.083396420528298e-05,
|
| 1747 |
-
"loss": 0.8228,
|
| 1748 |
-
"step": 237
|
| 1749 |
-
},
|
| 1750 |
-
{
|
| 1751 |
-
"epoch": 2.54,
|
| 1752 |
-
"grad_norm": 0.35767207742703394,
|
| 1753 |
-
"learning_rate": 6.0039129517636435e-05,
|
| 1754 |
-
"loss": 0.8167,
|
| 1755 |
-
"step": 238
|
| 1756 |
-
},
|
| 1757 |
-
{
|
| 1758 |
-
"epoch": 2.55,
|
| 1759 |
-
"grad_norm": 0.32869196909020376,
|
| 1760 |
-
"learning_rate": 5.924728791274432e-05,
|
| 1761 |
-
"loss": 0.7893,
|
| 1762 |
-
"step": 239
|
| 1763 |
-
},
|
| 1764 |
-
{
|
| 1765 |
-
"epoch": 2.56,
|
| 1766 |
-
"grad_norm": 0.31178216743238674,
|
| 1767 |
-
"learning_rate": 5.845849869981137e-05,
|
| 1768 |
-
"loss": 0.7354,
|
| 1769 |
-
"step": 240
|
| 1770 |
-
},
|
| 1771 |
-
{
|
| 1772 |
-
"epoch": 2.56,
|
| 1773 |
-
"eval_loss": 1.1470853090286255,
|
| 1774 |
-
"eval_runtime": 119.0749,
|
| 1775 |
-
"eval_samples_per_second": 8.39,
|
| 1776 |
-
"eval_steps_per_second": 0.529,
|
| 1777 |
-
"step": 240
|
| 1778 |
-
},
|
| 1779 |
-
{
|
| 1780 |
-
"epoch": 2.57,
|
| 1781 |
-
"grad_norm": 0.3146586486940167,
|
| 1782 |
-
"learning_rate": 5.7672820959417254e-05,
|
| 1783 |
-
"loss": 0.785,
|
| 1784 |
-
"step": 241
|
| 1785 |
-
},
|
| 1786 |
-
{
|
| 1787 |
-
"epoch": 2.58,
|
| 1788 |
-
"grad_norm": 0.3309473634570162,
|
| 1789 |
-
"learning_rate": 5.68903135390912e-05,
|
| 1790 |
-
"loss": 0.7007,
|
| 1791 |
-
"step": 242
|
| 1792 |
-
},
|
| 1793 |
-
{
|
| 1794 |
-
"epoch": 2.59,
|
| 1795 |
-
"grad_norm": 0.2927704203363025,
|
| 1796 |
-
"learning_rate": 5.611103504890444e-05,
|
| 1797 |
-
"loss": 0.778,
|
| 1798 |
-
"step": 243
|
| 1799 |
-
},
|
| 1800 |
-
{
|
| 1801 |
-
"epoch": 2.6,
|
| 1802 |
-
"grad_norm": 0.31346541530480915,
|
| 1803 |
-
"learning_rate": 5.533504385708024e-05,
|
| 1804 |
-
"loss": 0.7272,
|
| 1805 |
-
"step": 244
|
| 1806 |
-
},
|
| 1807 |
-
{
|
| 1808 |
-
"epoch": 2.62,
|
| 1809 |
-
"grad_norm": 0.2996345434845278,
|
| 1810 |
-
"learning_rate": 5.456239808562209e-05,
|
| 1811 |
-
"loss": 0.8091,
|
| 1812 |
-
"step": 245
|
| 1813 |
-
},
|
| 1814 |
-
{
|
| 1815 |
-
"epoch": 2.63,
|
| 1816 |
-
"grad_norm": 0.29407937930772826,
|
| 1817 |
-
"learning_rate": 5.379315560596038e-05,
|
| 1818 |
-
"loss": 0.7666,
|
| 1819 |
-
"step": 246
|
| 1820 |
-
},
|
| 1821 |
-
{
|
| 1822 |
-
"epoch": 2.64,
|
| 1823 |
-
"grad_norm": 0.30530254935425627,
|
| 1824 |
-
"learning_rate": 5.3027374034617785e-05,
|
| 1825 |
-
"loss": 0.7982,
|
| 1826 |
-
"step": 247
|
| 1827 |
-
},
|
| 1828 |
-
{
|
| 1829 |
-
"epoch": 2.65,
|
| 1830 |
-
"grad_norm": 0.3298149075133802,
|
| 1831 |
-
"learning_rate": 5.226511072889371e-05,
|
| 1832 |
-
"loss": 0.7962,
|
| 1833 |
-
"step": 248
|
| 1834 |
-
},
|
| 1835 |
-
{
|
| 1836 |
-
"epoch": 2.66,
|
| 1837 |
-
"grad_norm": 0.33155001378615223,
|
| 1838 |
-
"learning_rate": 5.1506422782568345e-05,
|
| 1839 |
-
"loss": 0.8087,
|
| 1840 |
-
"step": 249
|
| 1841 |
-
},
|
| 1842 |
-
{
|
| 1843 |
-
"epoch": 2.67,
|
| 1844 |
-
"grad_norm": 0.32891369446509405,
|
| 1845 |
-
"learning_rate": 5.0751367021626215e-05,
|
| 1846 |
-
"loss": 0.7702,
|
| 1847 |
-
"step": 250
|
| 1848 |
-
},
|
| 1849 |
-
{
|
| 1850 |
-
"epoch": 2.68,
|
| 1851 |
-
"grad_norm": 0.3042328939887202,
|
| 1852 |
-
"learning_rate": 5.000000000000002e-05,
|
| 1853 |
-
"loss": 0.7924,
|
| 1854 |
-
"step": 251
|
| 1855 |
-
},
|
| 1856 |
-
{
|
| 1857 |
-
"epoch": 2.69,
|
| 1858 |
-
"grad_norm": 0.3037799376581133,
|
| 1859 |
-
"learning_rate": 4.9252377995334444e-05,
|
| 1860 |
-
"loss": 0.7852,
|
| 1861 |
-
"step": 252
|
| 1862 |
-
},
|
| 1863 |
-
{
|
| 1864 |
-
"epoch": 2.7,
|
| 1865 |
-
"grad_norm": 0.3435430445603929,
|
| 1866 |
-
"learning_rate": 4.85085570047713e-05,
|
| 1867 |
-
"loss": 0.7501,
|
| 1868 |
-
"step": 253
|
| 1869 |
-
},
|
| 1870 |
-
{
|
| 1871 |
-
"epoch": 2.71,
|
| 1872 |
-
"grad_norm": 0.3072160193979946,
|
| 1873 |
-
"learning_rate": 4.776859274075506e-05,
|
| 1874 |
-
"loss": 0.7462,
|
| 1875 |
-
"step": 254
|
| 1876 |
-
},
|
| 1877 |
-
{
|
| 1878 |
-
"epoch": 2.72,
|
| 1879 |
-
"grad_norm": 0.3223586439500028,
|
| 1880 |
-
"learning_rate": 4.703254062686017e-05,
|
| 1881 |
-
"loss": 0.775,
|
| 1882 |
-
"step": 255
|
| 1883 |
-
},
|
| 1884 |
-
{
|
| 1885 |
-
"epoch": 2.73,
|
| 1886 |
-
"grad_norm": 0.3270406403084203,
|
| 1887 |
-
"learning_rate": 4.630045579363957e-05,
|
| 1888 |
-
"loss": 0.8306,
|
| 1889 |
-
"step": 256
|
| 1890 |
-
},
|
| 1891 |
-
{
|
| 1892 |
-
"epoch": 2.74,
|
| 1893 |
-
"grad_norm": 0.3360192842512657,
|
| 1894 |
-
"learning_rate": 4.557239307449561e-05,
|
| 1895 |
-
"loss": 0.7697,
|
| 1896 |
-
"step": 257
|
| 1897 |
-
},
|
| 1898 |
-
{
|
| 1899 |
-
"epoch": 2.75,
|
| 1900 |
-
"grad_norm": 0.34282816479900324,
|
| 1901 |
-
"learning_rate": 4.484840700157295e-05,
|
| 1902 |
-
"loss": 0.7654,
|
| 1903 |
-
"step": 258
|
| 1904 |
-
},
|
| 1905 |
-
{
|
| 1906 |
-
"epoch": 2.77,
|
| 1907 |
-
"grad_norm": 0.30039142762313786,
|
| 1908 |
-
"learning_rate": 4.412855180167406e-05,
|
| 1909 |
-
"loss": 0.7703,
|
| 1910 |
-
"step": 259
|
| 1911 |
-
},
|
| 1912 |
-
{
|
| 1913 |
-
"epoch": 2.78,
|
| 1914 |
-
"grad_norm": 0.34307884673711425,
|
| 1915 |
-
"learning_rate": 4.3412881392197526e-05,
|
| 1916 |
-
"loss": 0.7993,
|
| 1917 |
-
"step": 260
|
| 1918 |
-
},
|
| 1919 |
-
{
|
| 1920 |
-
"epoch": 2.79,
|
| 1921 |
-
"grad_norm": 0.33685538845268104,
|
| 1922 |
-
"learning_rate": 4.270144937709981e-05,
|
| 1923 |
-
"loss": 0.7866,
|
| 1924 |
-
"step": 261
|
| 1925 |
-
},
|
| 1926 |
-
{
|
| 1927 |
-
"epoch": 2.8,
|
| 1928 |
-
"grad_norm": 0.33166767859224683,
|
| 1929 |
-
"learning_rate": 4.19943090428802e-05,
|
| 1930 |
-
"loss": 0.8083,
|
| 1931 |
-
"step": 262
|
| 1932 |
-
},
|
| 1933 |
-
{
|
| 1934 |
-
"epoch": 2.81,
|
| 1935 |
-
"grad_norm": 0.3086370003245581,
|
| 1936 |
-
"learning_rate": 4.129151335458957e-05,
|
| 1937 |
-
"loss": 0.7938,
|
| 1938 |
-
"step": 263
|
| 1939 |
-
},
|
| 1940 |
-
{
|
| 1941 |
-
"epoch": 2.82,
|
| 1942 |
-
"grad_norm": 0.3715649674817313,
|
| 1943 |
-
"learning_rate": 4.059311495186338e-05,
|
| 1944 |
-
"loss": 0.7577,
|
| 1945 |
-
"step": 264
|
| 1946 |
-
},
|
| 1947 |
-
{
|
| 1948 |
-
"epoch": 2.82,
|
| 1949 |
-
"eval_loss": 1.1478512287139893,
|
| 1950 |
-
"eval_runtime": 119.1178,
|
| 1951 |
-
"eval_samples_per_second": 8.387,
|
| 1952 |
-
"eval_steps_per_second": 0.529,
|
| 1953 |
-
"step": 264
|
| 1954 |
-
},
|
| 1955 |
-
{
|
| 1956 |
-
"epoch": 2.83,
|
| 1957 |
-
"grad_norm": 0.3298033298390841,
|
| 1958 |
-
"learning_rate": 3.9899166144978904e-05,
|
| 1959 |
-
"loss": 0.8296,
|
| 1960 |
-
"step": 265
|
| 1961 |
-
},
|
| 1962 |
-
{
|
| 1963 |
-
"epoch": 2.84,
|
| 1964 |
-
"grad_norm": 0.3294808666769515,
|
| 1965 |
-
"learning_rate": 3.920971891093718e-05,
|
| 1966 |
-
"loss": 0.8206,
|
| 1967 |
-
"step": 266
|
| 1968 |
-
},
|
| 1969 |
-
{
|
| 1970 |
-
"epoch": 2.85,
|
| 1971 |
-
"grad_norm": 0.3239672501165848,
|
| 1972 |
-
"learning_rate": 3.852482488956992e-05,
|
| 1973 |
-
"loss": 0.8116,
|
| 1974 |
-
"step": 267
|
| 1975 |
-
},
|
| 1976 |
-
{
|
| 1977 |
-
"epoch": 2.86,
|
| 1978 |
-
"grad_norm": 0.3286742994048133,
|
| 1979 |
-
"learning_rate": 3.784453537967161e-05,
|
| 1980 |
-
"loss": 0.8096,
|
| 1981 |
-
"step": 268
|
| 1982 |
-
},
|
| 1983 |
-
{
|
| 1984 |
-
"epoch": 2.87,
|
| 1985 |
-
"grad_norm": 0.31259050250842946,
|
| 1986 |
-
"learning_rate": 3.7168901335157315e-05,
|
| 1987 |
-
"loss": 0.7669,
|
| 1988 |
-
"step": 269
|
| 1989 |
-
},
|
| 1990 |
-
{
|
| 1991 |
-
"epoch": 2.88,
|
| 1992 |
-
"grad_norm": 0.3308991711135206,
|
| 1993 |
-
"learning_rate": 3.649797336124615e-05,
|
| 1994 |
-
"loss": 0.8041,
|
| 1995 |
-
"step": 270
|
| 1996 |
-
},
|
| 1997 |
-
{
|
| 1998 |
-
"epoch": 2.89,
|
| 1999 |
-
"grad_norm": 0.32757727002633424,
|
| 2000 |
-
"learning_rate": 3.583180171067101e-05,
|
| 2001 |
-
"loss": 0.7673,
|
| 2002 |
-
"step": 271
|
| 2003 |
-
},
|
| 2004 |
-
{
|
| 2005 |
-
"epoch": 2.9,
|
| 2006 |
-
"grad_norm": 0.3342551756453125,
|
| 2007 |
-
"learning_rate": 3.517043627991441e-05,
|
| 2008 |
-
"loss": 0.8005,
|
| 2009 |
-
"step": 272
|
| 2010 |
-
},
|
| 2011 |
-
{
|
| 2012 |
-
"epoch": 2.91,
|
| 2013 |
-
"grad_norm": 0.31643754309861705,
|
| 2014 |
-
"learning_rate": 3.45139266054715e-05,
|
| 2015 |
-
"loss": 0.787,
|
| 2016 |
-
"step": 273
|
| 2017 |
-
},
|
| 2018 |
-
{
|
| 2019 |
-
"epoch": 2.93,
|
| 2020 |
-
"grad_norm": 0.3140452683879005,
|
| 2021 |
-
"learning_rate": 3.3862321860139576e-05,
|
| 2022 |
-
"loss": 0.7888,
|
| 2023 |
-
"step": 274
|
| 2024 |
-
},
|
| 2025 |
-
{
|
| 2026 |
-
"epoch": 2.94,
|
| 2027 |
-
"grad_norm": 0.30706221155036223,
|
| 2028 |
-
"learning_rate": 3.3215670849335155e-05,
|
| 2029 |
-
"loss": 0.827,
|
| 2030 |
-
"step": 275
|
| 2031 |
-
},
|
| 2032 |
-
{
|
| 2033 |
-
"epoch": 2.95,
|
| 2034 |
-
"grad_norm": 0.3185483102727301,
|
| 2035 |
-
"learning_rate": 3.257402200743821e-05,
|
| 2036 |
-
"loss": 0.7779,
|
| 2037 |
-
"step": 276
|
| 2038 |
-
},
|
| 2039 |
-
{
|
| 2040 |
-
"epoch": 2.96,
|
| 2041 |
-
"grad_norm": 0.3032818796307545,
|
| 2042 |
-
"learning_rate": 3.19374233941647e-05,
|
| 2043 |
-
"loss": 0.7993,
|
| 2044 |
-
"step": 277
|
| 2045 |
-
},
|
| 2046 |
-
{
|
| 2047 |
-
"epoch": 2.97,
|
| 2048 |
-
"grad_norm": 0.3057758504695884,
|
| 2049 |
-
"learning_rate": 3.130592269096671e-05,
|
| 2050 |
-
"loss": 0.768,
|
| 2051 |
-
"step": 278
|
| 2052 |
-
},
|
| 2053 |
-
{
|
| 2054 |
-
"epoch": 2.98,
|
| 2055 |
-
"grad_norm": 0.3245404038219604,
|
| 2056 |
-
"learning_rate": 3.0679567197461134e-05,
|
| 2057 |
-
"loss": 0.7706,
|
| 2058 |
-
"step": 279
|
| 2059 |
-
},
|
| 2060 |
-
{
|
| 2061 |
-
"epoch": 2.99,
|
| 2062 |
-
"grad_norm": 0.3376535123919746,
|
| 2063 |
-
"learning_rate": 3.005840382788685e-05,
|
| 2064 |
-
"loss": 0.7825,
|
| 2065 |
-
"step": 280
|
| 2066 |
-
},
|
| 2067 |
-
{
|
| 2068 |
-
"epoch": 3.0,
|
| 2069 |
-
"grad_norm": 0.34483227716329967,
|
| 2070 |
-
"learning_rate": 2.944247910759097e-05,
|
| 2071 |
-
"loss": 0.7725,
|
| 2072 |
-
"step": 281
|
| 2073 |
-
},
|
| 2074 |
-
{
|
| 2075 |
-
"epoch": 3.01,
|
| 2076 |
-
"grad_norm": 0.30532824560617583,
|
| 2077 |
-
"learning_rate": 2.8831839169543996e-05,
|
| 2078 |
-
"loss": 0.7228,
|
| 2079 |
-
"step": 282
|
| 2080 |
-
},
|
| 2081 |
-
{
|
| 2082 |
-
"epoch": 3.02,
|
| 2083 |
-
"grad_norm": 0.31015055336513103,
|
| 2084 |
-
"learning_rate": 2.8226529750884402e-05,
|
| 2085 |
-
"loss": 0.6507,
|
| 2086 |
-
"step": 283
|
| 2087 |
-
},
|
| 2088 |
-
{
|
| 2089 |
-
"epoch": 3.03,
|
| 2090 |
-
"grad_norm": 0.3125936248719555,
|
| 2091 |
-
"learning_rate": 2.7626596189492983e-05,
|
| 2092 |
-
"loss": 0.734,
|
| 2093 |
-
"step": 284
|
| 2094 |
-
},
|
| 2095 |
-
{
|
| 2096 |
-
"epoch": 3.04,
|
| 2097 |
-
"grad_norm": 0.32131974094099536,
|
| 2098 |
-
"learning_rate": 2.7032083420597e-05,
|
| 2099 |
-
"loss": 0.7168,
|
| 2100 |
-
"step": 285
|
| 2101 |
-
},
|
| 2102 |
-
{
|
| 2103 |
-
"epoch": 3.05,
|
| 2104 |
-
"grad_norm": 0.3188571782464755,
|
| 2105 |
-
"learning_rate": 2.6443035973404496e-05,
|
| 2106 |
-
"loss": 0.6591,
|
| 2107 |
-
"step": 286
|
| 2108 |
-
},
|
| 2109 |
-
{
|
| 2110 |
-
"epoch": 3.06,
|
| 2111 |
-
"grad_norm": 0.33177480330954007,
|
| 2112 |
-
"learning_rate": 2.585949796776912e-05,
|
| 2113 |
-
"loss": 0.6965,
|
| 2114 |
-
"step": 287
|
| 2115 |
-
},
|
| 2116 |
-
{
|
| 2117 |
-
"epoch": 3.07,
|
| 2118 |
-
"grad_norm": 0.38345252271104163,
|
| 2119 |
-
"learning_rate": 2.528151311088537e-05,
|
| 2120 |
-
"loss": 0.6647,
|
| 2121 |
-
"step": 288
|
| 2122 |
-
},
|
| 2123 |
-
{
|
| 2124 |
-
"epoch": 3.07,
|
| 2125 |
-
"eval_loss": 1.1923209428787231,
|
| 2126 |
-
"eval_runtime": 118.9649,
|
| 2127 |
-
"eval_samples_per_second": 8.397,
|
| 2128 |
-
"eval_steps_per_second": 0.53,
|
| 2129 |
-
"step": 288
|
| 2130 |
-
},
|
| 2131 |
-
{
|
| 2132 |
-
"epoch": 3.09,
|
| 2133 |
-
"grad_norm": 0.3519739075006545,
|
| 2134 |
-
"learning_rate": 2.4709124694015116e-05,
|
| 2135 |
-
"loss": 0.7169,
|
| 2136 |
-
"step": 289
|
| 2137 |
-
},
|
| 2138 |
-
{
|
| 2139 |
-
"epoch": 3.1,
|
| 2140 |
-
"grad_norm": 0.34731968650913336,
|
| 2141 |
-
"learning_rate": 2.4142375589244957e-05,
|
| 2142 |
-
"loss": 0.7161,
|
| 2143 |
-
"step": 290
|
| 2144 |
-
},
|
| 2145 |
-
{
|
| 2146 |
-
"epoch": 3.11,
|
| 2147 |
-
"grad_norm": 0.33778912337210615,
|
| 2148 |
-
"learning_rate": 2.3581308246275103e-05,
|
| 2149 |
-
"loss": 0.7155,
|
| 2150 |
-
"step": 291
|
| 2151 |
-
},
|
| 2152 |
-
{
|
| 2153 |
-
"epoch": 3.12,
|
| 2154 |
-
"grad_norm": 0.3209719266692497,
|
| 2155 |
-
"learning_rate": 2.302596468923981e-05,
|
| 2156 |
-
"loss": 0.672,
|
| 2157 |
-
"step": 292
|
| 2158 |
-
},
|
| 2159 |
-
{
|
| 2160 |
-
"epoch": 3.13,
|
| 2161 |
-
"grad_norm": 0.3450647699674907,
|
| 2162 |
-
"learning_rate": 2.247638651355991e-05,
|
| 2163 |
-
"loss": 0.696,
|
| 2164 |
-
"step": 293
|
| 2165 |
-
},
|
| 2166 |
-
{
|
| 2167 |
-
"epoch": 3.14,
|
| 2168 |
-
"grad_norm": 0.34077271836911865,
|
| 2169 |
-
"learning_rate": 2.1932614882827197e-05,
|
| 2170 |
-
"loss": 0.6947,
|
| 2171 |
-
"step": 294
|
| 2172 |
-
},
|
| 2173 |
-
{
|
| 2174 |
-
"epoch": 3.15,
|
| 2175 |
-
"grad_norm": 0.35952846733253163,
|
| 2176 |
-
"learning_rate": 2.139469052572127e-05,
|
| 2177 |
-
"loss": 0.6934,
|
| 2178 |
-
"step": 295
|
| 2179 |
-
},
|
| 2180 |
-
{
|
| 2181 |
-
"epoch": 3.16,
|
| 2182 |
-
"grad_norm": 0.32425812401737625,
|
| 2183 |
-
"learning_rate": 2.0862653732958915e-05,
|
| 2184 |
-
"loss": 0.6803,
|
| 2185 |
-
"step": 296
|
| 2186 |
-
},
|
| 2187 |
-
{
|
| 2188 |
-
"epoch": 3.17,
|
| 2189 |
-
"grad_norm": 0.3354776806257836,
|
| 2190 |
-
"learning_rate": 2.03365443542764e-05,
|
| 2191 |
-
"loss": 0.6847,
|
| 2192 |
-
"step": 297
|
| 2193 |
-
},
|
| 2194 |
-
{
|
| 2195 |
-
"epoch": 3.18,
|
| 2196 |
-
"grad_norm": 0.35880539160768654,
|
| 2197 |
-
"learning_rate": 1.981640179544466e-05,
|
| 2198 |
-
"loss": 0.6447,
|
| 2199 |
-
"step": 298
|
| 2200 |
-
},
|
| 2201 |
-
{
|
| 2202 |
-
"epoch": 3.19,
|
| 2203 |
-
"grad_norm": 0.3413724716725652,
|
| 2204 |
-
"learning_rate": 1.93022650153178e-05,
|
| 2205 |
-
"loss": 0.6224,
|
| 2206 |
-
"step": 299
|
| 2207 |
-
},
|
| 2208 |
-
{
|
| 2209 |
-
"epoch": 3.2,
|
| 2210 |
-
"grad_norm": 0.3424458691012398,
|
| 2211 |
-
"learning_rate": 1.879417252291502e-05,
|
| 2212 |
-
"loss": 0.6699,
|
| 2213 |
-
"step": 300
|
| 2214 |
-
},
|
| 2215 |
-
{
|
| 2216 |
-
"epoch": 3.21,
|
| 2217 |
-
"grad_norm": 0.3382667696983362,
|
| 2218 |
-
"learning_rate": 1.829216237453637e-05,
|
| 2219 |
-
"loss": 0.6797,
|
| 2220 |
-
"step": 301
|
| 2221 |
-
},
|
| 2222 |
-
{
|
| 2223 |
-
"epoch": 3.22,
|
| 2224 |
-
"grad_norm": 0.324989093083984,
|
| 2225 |
-
"learning_rate": 1.7796272170912253e-05,
|
| 2226 |
-
"loss": 0.691,
|
| 2227 |
-
"step": 302
|
| 2228 |
-
},
|
| 2229 |
-
{
|
| 2230 |
-
"epoch": 3.23,
|
| 2231 |
-
"grad_norm": 0.32204008590962435,
|
| 2232 |
-
"learning_rate": 1.730653905438714e-05,
|
| 2233 |
-
"loss": 0.6636,
|
| 2234 |
-
"step": 303
|
| 2235 |
-
},
|
| 2236 |
-
{
|
| 2237 |
-
"epoch": 3.25,
|
| 2238 |
-
"grad_norm": 0.34081693500058535,
|
| 2239 |
-
"learning_rate": 1.6822999706137567e-05,
|
| 2240 |
-
"loss": 0.7285,
|
| 2241 |
-
"step": 304
|
| 2242 |
-
},
|
| 2243 |
-
{
|
| 2244 |
-
"epoch": 3.26,
|
| 2245 |
-
"grad_norm": 0.3745986061815685,
|
| 2246 |
-
"learning_rate": 1.634569034342476e-05,
|
| 2247 |
-
"loss": 0.6896,
|
| 2248 |
-
"step": 305
|
| 2249 |
-
},
|
| 2250 |
-
{
|
| 2251 |
-
"epoch": 3.27,
|
| 2252 |
-
"grad_norm": 0.3460331973628518,
|
| 2253 |
-
"learning_rate": 1.587464671688187e-05,
|
| 2254 |
-
"loss": 0.6988,
|
| 2255 |
-
"step": 306
|
| 2256 |
-
},
|
| 2257 |
-
{
|
| 2258 |
-
"epoch": 3.28,
|
| 2259 |
-
"grad_norm": 0.3548738091123995,
|
| 2260 |
-
"learning_rate": 1.5409904107836358e-05,
|
| 2261 |
-
"loss": 0.7166,
|
| 2262 |
-
"step": 307
|
| 2263 |
-
},
|
| 2264 |
-
{
|
| 2265 |
-
"epoch": 3.29,
|
| 2266 |
-
"grad_norm": 0.3616387758766049,
|
| 2267 |
-
"learning_rate": 1.495149732566723e-05,
|
| 2268 |
-
"loss": 0.7033,
|
| 2269 |
-
"step": 308
|
| 2270 |
-
},
|
| 2271 |
-
{
|
| 2272 |
-
"epoch": 3.3,
|
| 2273 |
-
"grad_norm": 0.3358013853175185,
|
| 2274 |
-
"learning_rate": 1.4499460705197998e-05,
|
| 2275 |
-
"loss": 0.7096,
|
| 2276 |
-
"step": 309
|
| 2277 |
-
},
|
| 2278 |
-
{
|
| 2279 |
-
"epoch": 3.31,
|
| 2280 |
-
"grad_norm": 0.34774337705479985,
|
| 2281 |
-
"learning_rate": 1.4053828104124867e-05,
|
| 2282 |
-
"loss": 0.6695,
|
| 2283 |
-
"step": 310
|
| 2284 |
-
},
|
| 2285 |
-
{
|
| 2286 |
-
"epoch": 3.32,
|
| 2287 |
-
"grad_norm": 0.3273729493403579,
|
| 2288 |
-
"learning_rate": 1.361463290048085e-05,
|
| 2289 |
-
"loss": 0.6893,
|
| 2290 |
-
"step": 311
|
| 2291 |
-
},
|
| 2292 |
-
{
|
| 2293 |
-
"epoch": 3.33,
|
| 2294 |
-
"grad_norm": 0.343572039488577,
|
| 2295 |
-
"learning_rate": 1.3181907990135622e-05,
|
| 2296 |
-
"loss": 0.6928,
|
| 2297 |
-
"step": 312
|
| 2298 |
-
},
|
| 2299 |
-
{
|
| 2300 |
-
"epoch": 3.33,
|
| 2301 |
-
"eval_loss": 1.185637354850769,
|
| 2302 |
-
"eval_runtime": 119.6535,
|
| 2303 |
-
"eval_samples_per_second": 8.349,
|
| 2304 |
-
"eval_steps_per_second": 0.527,
|
| 2305 |
-
"step": 312
|
| 2306 |
-
},
|
| 2307 |
-
{
|
| 2308 |
-
"epoch": 3.34,
|
| 2309 |
-
"grad_norm": 0.36314106359094633,
|
| 2310 |
-
"learning_rate": 1.2755685784331783e-05,
|
| 2311 |
-
"loss": 0.6887,
|
| 2312 |
-
"step": 313
|
| 2313 |
-
},
|
| 2314 |
-
{
|
| 2315 |
-
"epoch": 3.35,
|
| 2316 |
-
"grad_norm": 0.3178995942964272,
|
| 2317 |
-
"learning_rate": 1.2335998207257137e-05,
|
| 2318 |
-
"loss": 0.7163,
|
| 2319 |
-
"step": 314
|
| 2320 |
-
},
|
| 2321 |
-
{
|
| 2322 |
-
"epoch": 3.36,
|
| 2323 |
-
"grad_norm": 0.3530883103274161,
|
| 2324 |
-
"learning_rate": 1.1922876693653585e-05,
|
| 2325 |
-
"loss": 0.6264,
|
| 2326 |
-
"step": 315
|
| 2327 |
-
},
|
| 2328 |
-
{
|
| 2329 |
-
"epoch": 3.37,
|
| 2330 |
-
"grad_norm": 0.34700396777915954,
|
| 2331 |
-
"learning_rate": 1.1516352186462586e-05,
|
| 2332 |
-
"loss": 0.6414,
|
| 2333 |
-
"step": 316
|
| 2334 |
-
},
|
| 2335 |
-
{
|
| 2336 |
-
"epoch": 3.38,
|
| 2337 |
-
"grad_norm": 0.3259373809872755,
|
| 2338 |
-
"learning_rate": 1.1116455134507664e-05,
|
| 2339 |
-
"loss": 0.6461,
|
| 2340 |
-
"step": 317
|
| 2341 |
-
},
|
| 2342 |
-
{
|
| 2343 |
-
"epoch": 3.4,
|
| 2344 |
-
"grad_norm": 0.35544661568277985,
|
| 2345 |
-
"learning_rate": 1.0723215490213634e-05,
|
| 2346 |
-
"loss": 0.6723,
|
| 2347 |
-
"step": 318
|
| 2348 |
-
},
|
| 2349 |
-
{
|
| 2350 |
-
"epoch": 3.41,
|
| 2351 |
-
"grad_norm": 0.3488692435606677,
|
| 2352 |
-
"learning_rate": 1.0336662707363287e-05,
|
| 2353 |
-
"loss": 0.7782,
|
| 2354 |
-
"step": 319
|
| 2355 |
-
},
|
| 2356 |
-
{
|
| 2357 |
-
"epoch": 3.42,
|
| 2358 |
-
"grad_norm": 0.35693983497851145,
|
| 2359 |
-
"learning_rate": 9.95682573889114e-06,
|
| 2360 |
-
"loss": 0.6982,
|
| 2361 |
-
"step": 320
|
| 2362 |
-
},
|
| 2363 |
-
{
|
| 2364 |
-
"epoch": 3.43,
|
| 2365 |
-
"grad_norm": 0.33248426163504435,
|
| 2366 |
-
"learning_rate": 9.583733034714981e-06,
|
| 2367 |
-
"loss": 0.6326,
|
| 2368 |
-
"step": 321
|
| 2369 |
-
},
|
| 2370 |
-
{
|
| 2371 |
-
"epoch": 3.44,
|
| 2372 |
-
"grad_norm": 0.38375415594727097,
|
| 2373 |
-
"learning_rate": 9.217412539604942e-06,
|
| 2374 |
-
"loss": 0.6971,
|
| 2375 |
-
"step": 322
|
| 2376 |
-
},
|
| 2377 |
-
{
|
| 2378 |
-
"epoch": 3.45,
|
| 2379 |
-
"grad_norm": 0.37036824832855825,
|
| 2380 |
-
"learning_rate": 8.857891691090337e-06,
|
| 2381 |
-
"loss": 0.698,
|
| 2382 |
-
"step": 323
|
| 2383 |
-
},
|
| 2384 |
-
{
|
| 2385 |
-
"epoch": 3.46,
|
| 2386 |
-
"grad_norm": 0.3417675223689608,
|
| 2387 |
-
"learning_rate": 8.505197417404687e-06,
|
| 2388 |
-
"loss": 0.6836,
|
| 2389 |
-
"step": 324
|
| 2390 |
-
},
|
| 2391 |
-
{
|
| 2392 |
-
"epoch": 3.47,
|
| 2393 |
-
"grad_norm": 0.3700366171554004,
|
| 2394 |
-
"learning_rate": 8.15935613546872e-06,
|
| 2395 |
-
"loss": 0.6465,
|
| 2396 |
-
"step": 325
|
| 2397 |
-
},
|
| 2398 |
-
{
|
| 2399 |
-
"epoch": 3.48,
|
| 2400 |
-
"grad_norm": 0.3492600384568647,
|
| 2401 |
-
"learning_rate": 7.820393748911791e-06,
|
| 2402 |
-
"loss": 0.6808,
|
| 2403 |
-
"step": 326
|
| 2404 |
-
},
|
| 2405 |
-
{
|
| 2406 |
-
"epoch": 3.49,
|
| 2407 |
-
"grad_norm": 0.36976467848962297,
|
| 2408 |
-
"learning_rate": 7.488335646131628e-06,
|
| 2409 |
-
"loss": 0.6615,
|
| 2410 |
-
"step": 327
|
| 2411 |
-
},
|
| 2412 |
-
{
|
| 2413 |
-
"epoch": 3.5,
|
| 2414 |
-
"grad_norm": 0.3290900616093639,
|
| 2415 |
-
"learning_rate": 7.163206698392744e-06,
|
| 2416 |
-
"loss": 0.7275,
|
| 2417 |
-
"step": 328
|
| 2418 |
-
},
|
| 2419 |
-
{
|
| 2420 |
-
"epoch": 3.51,
|
| 2421 |
-
"grad_norm": 0.3566655771775109,
|
| 2422 |
-
"learning_rate": 6.845031257963619e-06,
|
| 2423 |
-
"loss": 0.7116,
|
| 2424 |
-
"step": 329
|
| 2425 |
-
},
|
| 2426 |
-
{
|
| 2427 |
-
"epoch": 3.52,
|
| 2428 |
-
"grad_norm": 0.320805379756211,
|
| 2429 |
-
"learning_rate": 6.533833156292679e-06,
|
| 2430 |
-
"loss": 0.6879,
|
| 2431 |
-
"step": 330
|
| 2432 |
-
},
|
| 2433 |
-
{
|
| 2434 |
-
"epoch": 3.53,
|
| 2435 |
-
"grad_norm": 0.34337800662165496,
|
| 2436 |
-
"learning_rate": 6.229635702223324e-06,
|
| 2437 |
-
"loss": 0.7163,
|
| 2438 |
-
"step": 331
|
| 2439 |
-
},
|
| 2440 |
-
{
|
| 2441 |
-
"epoch": 3.54,
|
| 2442 |
-
"grad_norm": 0.36367722946797926,
|
| 2443 |
-
"learning_rate": 5.932461680248014e-06,
|
| 2444 |
-
"loss": 0.7021,
|
| 2445 |
-
"step": 332
|
| 2446 |
-
},
|
| 2447 |
-
{
|
| 2448 |
-
"epoch": 3.56,
|
| 2449 |
-
"grad_norm": 0.36522399153203633,
|
| 2450 |
-
"learning_rate": 5.6423333488018095e-06,
|
| 2451 |
-
"loss": 0.6861,
|
| 2452 |
-
"step": 333
|
| 2453 |
-
},
|
| 2454 |
-
{
|
| 2455 |
-
"epoch": 3.57,
|
| 2456 |
-
"grad_norm": 0.365852241324378,
|
| 2457 |
-
"learning_rate": 5.359272438595153e-06,
|
| 2458 |
-
"loss": 0.6885,
|
| 2459 |
-
"step": 334
|
| 2460 |
-
},
|
| 2461 |
-
{
|
| 2462 |
-
"epoch": 3.58,
|
| 2463 |
-
"grad_norm": 0.3614672831032901,
|
| 2464 |
-
"learning_rate": 5.083300150986259e-06,
|
| 2465 |
-
"loss": 0.6783,
|
| 2466 |
-
"step": 335
|
| 2467 |
-
},
|
| 2468 |
-
{
|
| 2469 |
-
"epoch": 3.59,
|
| 2470 |
-
"grad_norm": 0.3642169019209535,
|
| 2471 |
-
"learning_rate": 4.8144371563930476e-06,
|
| 2472 |
-
"loss": 0.731,
|
| 2473 |
-
"step": 336
|
| 2474 |
-
},
|
| 2475 |
-
{
|
| 2476 |
-
"epoch": 3.59,
|
| 2477 |
-
"eval_loss": 1.1889785528182983,
|
| 2478 |
-
"eval_runtime": 119.1203,
|
| 2479 |
-
"eval_samples_per_second": 8.386,
|
| 2480 |
-
"eval_steps_per_second": 0.529,
|
| 2481 |
-
"step": 336
|
| 2482 |
-
},
|
| 2483 |
-
{
|
| 2484 |
-
"epoch": 3.6,
|
| 2485 |
-
"grad_norm": 0.34161446199658746,
|
| 2486 |
-
"learning_rate": 4.552703592745033e-06,
|
| 2487 |
-
"loss": 0.7138,
|
| 2488 |
-
"step": 337
|
| 2489 |
-
},
|
| 2490 |
-
{
|
| 2491 |
-
"epoch": 3.61,
|
| 2492 |
-
"grad_norm": 0.35734876291405965,
|
| 2493 |
-
"learning_rate": 4.298119063974914e-06,
|
| 2494 |
-
"loss": 0.6725,
|
| 2495 |
-
"step": 338
|
| 2496 |
-
},
|
| 2497 |
-
{
|
| 2498 |
-
"epoch": 3.62,
|
| 2499 |
-
"grad_norm": 0.32914706405183236,
|
| 2500 |
-
"learning_rate": 4.050702638550275e-06,
|
| 2501 |
-
"loss": 0.6961,
|
| 2502 |
-
"step": 339
|
| 2503 |
-
},
|
| 2504 |
-
{
|
| 2505 |
-
"epoch": 3.63,
|
| 2506 |
-
"grad_norm": 0.3570873592035516,
|
| 2507 |
-
"learning_rate": 3.810472848045266e-06,
|
| 2508 |
-
"loss": 0.6514,
|
| 2509 |
-
"step": 340
|
| 2510 |
-
},
|
| 2511 |
-
{
|
| 2512 |
-
"epoch": 3.64,
|
| 2513 |
-
"grad_norm": 0.3597890086242411,
|
| 2514 |
-
"learning_rate": 3.5774476857527107e-06,
|
| 2515 |
-
"loss": 0.6962,
|
| 2516 |
-
"step": 341
|
| 2517 |
-
},
|
| 2518 |
-
{
|
| 2519 |
-
"epoch": 3.65,
|
| 2520 |
-
"grad_norm": 0.38480539648857937,
|
| 2521 |
-
"learning_rate": 3.3516446053363015e-06,
|
| 2522 |
-
"loss": 0.6686,
|
| 2523 |
-
"step": 342
|
| 2524 |
-
},
|
| 2525 |
-
{
|
| 2526 |
-
"epoch": 3.66,
|
| 2527 |
-
"grad_norm": 0.3525111961446683,
|
| 2528 |
-
"learning_rate": 3.133080519523368e-06,
|
| 2529 |
-
"loss": 0.6667,
|
| 2530 |
-
"step": 343
|
| 2531 |
-
},
|
| 2532 |
-
{
|
| 2533 |
-
"epoch": 3.67,
|
| 2534 |
-
"grad_norm": 0.3735012861865468,
|
| 2535 |
-
"learning_rate": 2.921771798838069e-06,
|
| 2536 |
-
"loss": 0.7137,
|
| 2537 |
-
"step": 344
|
| 2538 |
-
},
|
| 2539 |
-
{
|
| 2540 |
-
"epoch": 3.68,
|
| 2541 |
-
"grad_norm": 0.35587547424949395,
|
| 2542 |
-
"learning_rate": 2.717734270375272e-06,
|
| 2543 |
-
"loss": 0.6743,
|
| 2544 |
-
"step": 345
|
| 2545 |
-
},
|
| 2546 |
-
{
|
| 2547 |
-
"epoch": 3.69,
|
| 2548 |
-
"grad_norm": 0.3657817512714091,
|
| 2549 |
-
"learning_rate": 2.520983216615047e-06,
|
| 2550 |
-
"loss": 0.6373,
|
| 2551 |
-
"step": 346
|
| 2552 |
-
},
|
| 2553 |
-
{
|
| 2554 |
-
"epoch": 3.7,
|
| 2555 |
-
"grad_norm": 0.3509346866409975,
|
| 2556 |
-
"learning_rate": 2.3315333742780942e-06,
|
| 2557 |
-
"loss": 0.6703,
|
| 2558 |
-
"step": 347
|
| 2559 |
-
},
|
| 2560 |
-
{
|
| 2561 |
-
"epoch": 3.72,
|
| 2562 |
-
"grad_norm": 0.3459857927296872,
|
| 2563 |
-
"learning_rate": 2.1493989332218468e-06,
|
| 2564 |
-
"loss": 0.7223,
|
| 2565 |
-
"step": 348
|
| 2566 |
-
},
|
| 2567 |
-
{
|
| 2568 |
-
"epoch": 3.73,
|
| 2569 |
-
"grad_norm": 0.38016379979574644,
|
| 2570 |
-
"learning_rate": 1.974593535377722e-06,
|
| 2571 |
-
"loss": 0.7024,
|
| 2572 |
-
"step": 349
|
| 2573 |
-
},
|
| 2574 |
-
{
|
| 2575 |
-
"epoch": 3.74,
|
| 2576 |
-
"grad_norm": 0.3191443635681887,
|
| 2577 |
-
"learning_rate": 1.8071302737293295e-06,
|
| 2578 |
-
"loss": 0.6933,
|
| 2579 |
-
"step": 350
|
| 2580 |
-
},
|
| 2581 |
-
{
|
| 2582 |
-
"epoch": 3.75,
|
| 2583 |
-
"grad_norm": 0.3586330010035836,
|
| 2584 |
-
"learning_rate": 1.6470216913317626e-06,
|
| 2585 |
-
"loss": 0.7001,
|
| 2586 |
-
"step": 351
|
| 2587 |
-
},
|
| 2588 |
-
{
|
| 2589 |
-
"epoch": 3.76,
|
| 2590 |
-
"grad_norm": 0.3850836045039222,
|
| 2591 |
-
"learning_rate": 1.4942797803721543e-06,
|
| 2592 |
-
"loss": 0.61,
|
| 2593 |
-
"step": 352
|
| 2594 |
-
},
|
| 2595 |
-
{
|
| 2596 |
-
"epoch": 3.77,
|
| 2597 |
-
"grad_norm": 0.34888020988423163,
|
| 2598 |
-
"learning_rate": 1.348915981271437e-06,
|
| 2599 |
-
"loss": 0.6528,
|
| 2600 |
-
"step": 353
|
| 2601 |
-
},
|
| 2602 |
-
{
|
| 2603 |
-
"epoch": 3.78,
|
| 2604 |
-
"grad_norm": 0.354531551308838,
|
| 2605 |
-
"learning_rate": 1.2109411818274852e-06,
|
| 2606 |
-
"loss": 0.7128,
|
| 2607 |
-
"step": 354
|
| 2608 |
-
},
|
| 2609 |
-
{
|
| 2610 |
-
"epoch": 3.79,
|
| 2611 |
-
"grad_norm": 0.38330787603530414,
|
| 2612 |
-
"learning_rate": 1.0803657163995895e-06,
|
| 2613 |
-
"loss": 0.643,
|
| 2614 |
-
"step": 355
|
| 2615 |
-
},
|
| 2616 |
-
{
|
| 2617 |
-
"epoch": 3.8,
|
| 2618 |
-
"grad_norm": 0.3432828481582299,
|
| 2619 |
-
"learning_rate": 9.57199365134387e-07,
|
| 2620 |
-
"loss": 0.6318,
|
| 2621 |
-
"step": 356
|
| 2622 |
-
},
|
| 2623 |
-
{
|
| 2624 |
-
"epoch": 3.81,
|
| 2625 |
-
"grad_norm": 0.37153831756155836,
|
| 2626 |
-
"learning_rate": 8.41451353233369e-07,
|
| 2627 |
-
"loss": 0.694,
|
| 2628 |
-
"step": 357
|
| 2629 |
-
},
|
| 2630 |
-
{
|
| 2631 |
-
"epoch": 3.82,
|
| 2632 |
-
"grad_norm": 0.3701195226107489,
|
| 2633 |
-
"learning_rate": 7.331303502618903e-07,
|
| 2634 |
-
"loss": 0.6561,
|
| 2635 |
-
"step": 358
|
| 2636 |
-
},
|
| 2637 |
-
{
|
| 2638 |
-
"epoch": 3.83,
|
| 2639 |
-
"grad_norm": 0.3831847969050675,
|
| 2640 |
-
"learning_rate": 6.322444694998319e-07,
|
| 2641 |
-
"loss": 0.7167,
|
| 2642 |
-
"step": 359
|
| 2643 |
-
},
|
| 2644 |
-
{
|
| 2645 |
-
"epoch": 3.84,
|
| 2646 |
-
"grad_norm": 0.3382934858827101,
|
| 2647 |
-
"learning_rate": 5.388012673338661e-07,
|
| 2648 |
-
"loss": 0.7193,
|
| 2649 |
-
"step": 360
|
| 2650 |
-
},
|
| 2651 |
-
{
|
| 2652 |
-
"epoch": 3.84,
|
| 2653 |
-
"eval_loss": 1.191129207611084,
|
| 2654 |
-
"eval_runtime": 119.5001,
|
| 2655 |
-
"eval_samples_per_second": 8.36,
|
| 2656 |
-
"eval_steps_per_second": 0.527,
|
| 2657 |
-
"step": 360
|
| 2658 |
-
},
|
| 2659 |
-
{
|
| 2660 |
-
"epoch": 3.85,
|
| 2661 |
-
"grad_norm": 0.35121545616673777,
|
| 2662 |
-
"learning_rate": 4.5280774269154115e-07,
|
| 2663 |
-
"loss": 0.6838,
|
| 2664 |
-
"step": 361
|
| 2665 |
-
},
|
| 2666 |
-
{
|
| 2667 |
-
"epoch": 3.86,
|
| 2668 |
-
"grad_norm": 0.3677398099025592,
|
| 2669 |
-
"learning_rate": 3.742703365170241e-07,
|
| 2670 |
-
"loss": 0.6364,
|
| 2671 |
-
"step": 362
|
| 2672 |
-
},
|
| 2673 |
-
{
|
| 2674 |
-
"epoch": 3.88,
|
| 2675 |
-
"grad_norm": 0.36901780764712055,
|
| 2676 |
-
"learning_rate": 3.0319493128866396e-07,
|
| 2677 |
-
"loss": 0.6827,
|
| 2678 |
-
"step": 363
|
| 2679 |
-
},
|
| 2680 |
-
{
|
| 2681 |
-
"epoch": 3.89,
|
| 2682 |
-
"grad_norm": 0.35056873374955655,
|
| 2683 |
-
"learning_rate": 2.395868505784438e-07,
|
| 2684 |
-
"loss": 0.6432,
|
| 2685 |
-
"step": 364
|
| 2686 |
-
},
|
| 2687 |
-
{
|
| 2688 |
-
"epoch": 3.9,
|
| 2689 |
-
"grad_norm": 0.3627218430880944,
|
| 2690 |
-
"learning_rate": 1.83450858653178e-07,
|
| 2691 |
-
"loss": 0.7243,
|
| 2692 |
-
"step": 365
|
| 2693 |
-
},
|
| 2694 |
-
{
|
| 2695 |
-
"epoch": 3.91,
|
| 2696 |
-
"grad_norm": 0.32428680992451525,
|
| 2697 |
-
"learning_rate": 1.3479116011769767e-07,
|
| 2698 |
-
"loss": 0.6574,
|
| 2699 |
-
"step": 366
|
| 2700 |
-
},
|
| 2701 |
-
{
|
| 2702 |
-
"epoch": 3.92,
|
| 2703 |
-
"grad_norm": 0.349287012328286,
|
| 2704 |
-
"learning_rate": 9.361139959993549e-08,
|
| 2705 |
-
"loss": 0.7048,
|
| 2706 |
-
"step": 367
|
| 2707 |
-
},
|
| 2708 |
-
{
|
| 2709 |
-
"epoch": 3.93,
|
| 2710 |
-
"grad_norm": 0.3701389678746645,
|
| 2711 |
-
"learning_rate": 5.991466147791113e-08,
|
| 2712 |
-
"loss": 0.6742,
|
| 2713 |
-
"step": 368
|
| 2714 |
-
},
|
| 2715 |
-
{
|
| 2716 |
-
"epoch": 3.94,
|
| 2717 |
-
"grad_norm": 0.3562569316390435,
|
| 2718 |
-
"learning_rate": 3.370346964876036e-08,
|
| 2719 |
-
"loss": 0.6747,
|
| 2720 |
-
"step": 369
|
| 2721 |
-
},
|
| 2722 |
-
{
|
| 2723 |
-
"epoch": 3.95,
|
| 2724 |
-
"grad_norm": 0.35498414175449955,
|
| 2725 |
-
"learning_rate": 1.4979787339619578e-08,
|
| 2726 |
-
"loss": 0.6466,
|
| 2727 |
-
"step": 370
|
| 2728 |
-
},
|
| 2729 |
-
{
|
| 2730 |
-
"epoch": 3.96,
|
| 2731 |
-
"grad_norm": 0.353867118979457,
|
| 2732 |
-
"learning_rate": 3.745016960665648e-09,
|
| 2733 |
-
"loss": 0.6586,
|
| 2734 |
-
"step": 371
|
| 2735 |
-
},
|
| 2736 |
-
{
|
| 2737 |
-
"epoch": 3.97,
|
| 2738 |
-
"grad_norm": 0.3411723289198462,
|
| 2739 |
-
"learning_rate": 0.0,
|
| 2740 |
-
"loss": 0.6657,
|
| 2741 |
-
"step": 372
|
| 2742 |
-
}
|
| 2743 |
-
],
|
| 2744 |
-
"logging_steps": 1,
|
| 2745 |
-
"max_steps": 372,
|
| 2746 |
-
"num_input_tokens_seen": 0,
|
| 2747 |
-
"num_train_epochs": 4,
|
| 2748 |
-
"save_steps": 93,
|
| 2749 |
-
"total_flos": 6.890718948426252e+18,
|
| 2750 |
-
"train_batch_size": 4,
|
| 2751 |
-
"trial_name": null,
|
| 2752 |
-
"trial_params": null
|
| 2753 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|