--- license: mit base_model: VietAI/vit5-base-vietnews-summarization tags: - generated_from_trainer metrics: - rouge model-index: - name: my_summarize_vi results: [] --- # my_summarize_vi This model is a fine-tuned version of [VietAI/vit5-base-vietnews-summarization](https://huggingface.co/VietAI/vit5-base-vietnews-summarization) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7072 - Rouge1: 0.2541 - Rouge2: 0.1945 - Rougel: 0.2328 - Rougelsum: 0.233 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.0682 | 1.0 | 801 | 0.6850 | 0.252 | 0.1922 | 0.2305 | 0.2304 | 19.0 | | 0.7129 | 2.0 | 1602 | 0.6764 | 0.2515 | 0.1862 | 0.2273 | 0.2274 | 19.0 | | 0.5657 | 3.0 | 2403 | 0.6899 | 0.2553 | 0.1959 | 0.2334 | 0.2335 | 19.0 | | 0.4963 | 4.0 | 3204 | 0.7072 | 0.2541 | 0.1945 | 0.2328 | 0.233 | 19.0 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3