--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: duraad/nep-spell-mbart-new model-index: - name: nep-spell-mbart-new results: [] --- # nep-spell-mbart-new This model is a fine-tuned version of [duraad/nep-spell-mbart-new](https://huggingface.co/duraad/nep-spell-mbart-new) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0020 - Accuracy: 0.7987 - Precision: 0.7987 - Recall: 0.7987 - F1: 0.7987 - Exact Match: 0.7987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Exact Match | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | 0.0046 | 0.79 | 1000 | 0.0030 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | | 0.002 | 1.57 | 2000 | 0.0024 | 0.7799 | 0.7799 | 0.7799 | 0.7799 | 0.7799 | | 0.0008 | 2.36 | 3000 | 0.0020 | 0.7987 | 0.7987 | 0.7987 | 0.7987 | 0.7987 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1