from typing import Dict, List, Any from transformers import AutoProcessor, MusicgenForConditionalGeneration import torch class EndpointHandler: def __init__(self, path=""): # load model and processor from path self.processor = AutoProcessor.from_pretrained(path) self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16).to("cuda") def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:dict:): The payload with the text prompt and generation parameters. """ # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess inputs = self.processor( text=[inputs], padding=True, return_tensors="pt",).to("cuda") # pass inputs with all kwargs in data if parameters is not None: with torch.autocast("cuda"): outputs = self.model.generate(**inputs, **parameters, do_sample=True, guidance_scale=3) else: with torch.autocast("cuda"): outputs = self.model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=450) # postprocess the prediction prediction = outputs[0].cpu().numpy().tolist() return [{"generated_audio": prediction}]