summarization_model

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5805
  • Rouge1: 0.1786
  • Rouge2: 0.0576
  • Rougel: 0.1488
  • Rougelsum: 0.148
  • Gen Len: 18.5642

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 377 1.6488 0.1711 0.0545 0.1441 0.1445 18.5134
1.851 2.0 754 1.6059 0.1743 0.0565 0.1478 0.1477 18.5134
1.7899 3.0 1131 1.5859 0.1758 0.0575 0.1463 0.1459 18.5433
1.7524 4.0 1508 1.5805 0.1786 0.0576 0.1488 0.148 18.5642

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
149
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for dross20/summarization_model

Base model

google-t5/t5-small
Finetuned
(1726)
this model

Space using dross20/summarization_model 1