summarization_model
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5805
- Rouge1: 0.1786
- Rouge2: 0.0576
- Rougel: 0.1488
- Rougelsum: 0.148
- Gen Len: 18.5642
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 377 | 1.6488 | 0.1711 | 0.0545 | 0.1441 | 0.1445 | 18.5134 |
1.851 | 2.0 | 754 | 1.6059 | 0.1743 | 0.0565 | 0.1478 | 0.1477 | 18.5134 |
1.7899 | 3.0 | 1131 | 1.5859 | 0.1758 | 0.0575 | 0.1463 | 0.1459 | 18.5433 |
1.7524 | 4.0 | 1508 | 1.5805 | 0.1786 | 0.0576 | 0.1488 | 0.148 | 18.5642 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 149
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dross20/summarization_model
Base model
google-t5/t5-small