Text-to-Image
Gggggtggyi commited on
Commit
ff1f0cb
1 Parent(s): 7acac97

upload the rest of the models

Browse files
zd_base_proto_lion16_r2e5_ema.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26f02c58820ed34abb2a4968688b37d86c0c18649e052fc3ed435c86c3e3b078
3
+ size 2132625438
zd_base_proto_lion16_r2e5_ema.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false # Note: different from the one we trained before
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False
20
+
21
+ scheduler_config: # 10000 warmup steps
22
+ target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ params:
24
+ warm_up_steps: [ 10000 ]
25
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ f_start: [ 1.e-6 ]
27
+ f_max: [ 1. ]
28
+ f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 32 # unused
34
+ in_channels: 4
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
zd_inpaint_proto_lion16_r2e5.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad7e1ac757ecf5691c484cb6224565f52e7b3c5cc173442c2a16770c132ce6e3
3
+ size 2132654238
zd_inpaint_proto_lion16_r2e5.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false # Note: different from the one we trained before
16
+ conditioning_key: hybrid # important
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ finetune_keys: null
20
+
21
+ scheduler_config: # 10000 warmup steps
22
+ target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ params:
24
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
25
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ f_start: [ 1.e-6 ]
27
+ f_max: [ 1. ]
28
+ f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 32 # unused
34
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
zd_inpaint_proto_lion16_r2e5_ema.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a785cbfea87cf34d40bfc33d43637dc2936fbcf6d740533e3579a2c9602e377
3
+ size 2132654238
zd_inpaint_proto_lion16_r2e5_ema.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false # Note: different from the one we trained before
16
+ conditioning_key: hybrid # important
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ finetune_keys: null
20
+
21
+ scheduler_config: # 10000 warmup steps
22
+ target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ params:
24
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
25
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ f_start: [ 1.e-6 ]
27
+ f_max: [ 1. ]
28
+ f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 32 # unused
34
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder