--- license: mit base_model: dbmdz/bert-base-german-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-20000-ner-uncased results: [] --- # bert-base-german-cased-20000-ner-uncased This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.8871 - Recall: 0.9013 - F1: 0.8941 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.34 | 64 | 0.0573 | 0.8859 | 0.8526 | 0.8689 | 0.9837 | | No log | 0.68 | 128 | 0.0654 | 0.8107 | 0.8957 | 0.8511 | 0.9808 | | No log | 1.02 | 192 | 0.0531 | 0.8654 | 0.8846 | 0.8749 | 0.9842 | | No log | 1.35 | 256 | 0.0467 | 0.8847 | 0.8853 | 0.8850 | 0.9857 | | No log | 1.69 | 320 | 0.0466 | 0.9102 | 0.8883 | 0.8992 | 0.9864 | | No log | 2.03 | 384 | 0.0467 | 0.8794 | 0.8951 | 0.8872 | 0.9854 | | No log | 2.37 | 448 | 0.0520 | 0.8864 | 0.9001 | 0.8932 | 0.9851 | | 0.0531 | 2.71 | 512 | 0.0549 | 0.8894 | 0.8877 | 0.8885 | 0.9854 | | 0.0531 | 3.05 | 576 | 0.0534 | 0.8942 | 0.8920 | 0.8931 | 0.9857 | | 0.0531 | 3.39 | 640 | 0.0526 | 0.8917 | 0.8994 | 0.8956 | 0.9856 | | 0.0531 | 3.72 | 704 | 0.0576 | 0.9049 | 0.8976 | 0.9012 | 0.9857 | | 0.0531 | 4.06 | 768 | 0.0700 | 0.8529 | 0.9229 | 0.8865 | 0.9830 | | 0.0531 | 4.4 | 832 | 0.0657 | 0.8716 | 0.9167 | 0.8936 | 0.9840 | | 0.0531 | 4.74 | 896 | 0.0617 | 0.8871 | 0.9013 | 0.8941 | 0.9848 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3