--- tags: - paraphrasing - generated_from_trainer datasets: - paws metrics: - rouge base_model: google/pegasus-xsum model-index: - name: pegasus-xsum-finetuned-paws results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: paws type: paws args: labeled_final metrics: - type: rouge value: 92.4371 name: Rouge1 --- # pegasus-xsum-finetuned-paws This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the paws dataset. It achieves the following results on the evaluation set: - Loss: 2.1199 - Rouge1: 92.4371 - Rouge2: 75.4061 - Rougel: 84.1519 - Rougelsum: 84.1958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.1481 | 1.46 | 1000 | 2.0112 | 93.7727 | 73.3021 | 84.2963 | 84.2506 | | 2.0113 | 2.93 | 2000 | 2.0579 | 93.813 | 73.4119 | 84.3674 | 84.2693 | | 2.054 | 4.39 | 3000 | 2.0890 | 93.3926 | 73.3727 | 84.2814 | 84.1649 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1