--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-xsmall-finetuned-DAGPap22 results: [] --- # deberta-v3-xsmall-finetuned-DAGPap22 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1285 - Accuracy: 0.9794 - F1: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 402 | 0.2610 | 0.9477 | 0.9621 | | 0.4318 | 2.0 | 804 | 0.2039 | 0.9421 | 0.9559 | | 0.1105 | 3.0 | 1206 | 0.1734 | 0.9664 | 0.9748 | | 0.0451 | 4.0 | 1608 | 0.1000 | 0.9850 | 0.9890 | | 0.0073 | 5.0 | 2010 | 0.1285 | 0.9794 | 0.9850 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1