--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: tst_fine-tuning-lilt results: [] --- # tst_fine-tuning-lilt This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.2131 - eval_ANSWER: {'precision': 0.8539976825028969, 'recall': 0.9020807833537332, 'f1': 0.8773809523809523, 'number': 817} - eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.47058823529411764, 'f1': 0.5517241379310345, 'number': 119} - eval_QUESTION: {'precision': 0.8663239074550129, 'recall': 0.9387186629526463, 'f1': 0.9010695187165776, 'number': 1077} - eval_overall_precision: 0.8534 - eval_overall_recall: 0.8962 - eval_overall_f1: 0.8742 - eval_overall_accuracy: 0.8048 - eval_runtime: 1.2663 - eval_samples_per_second: 39.484 - eval_steps_per_second: 5.528 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1