import torch | |
from typing import Dict, Any, List | |
from transformers import pipeline | |
class EndpointHandler: | |
def __init__( | |
self, | |
path: str, | |
) -> None: | |
self.pipeline = pipeline(model=path, torch_dtype=torch.bfloat16, trust_remote_code=True, return_full_text=True) | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
inputs (:obj: `str`) | |
Return: | |
A :obj:`list` | `dict`: will be serialized and returned | |
""" | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
# pass inputs with all kwargs in data | |
if parameters is not None: | |
prediction = self.pipeline(inputs, **parameters) | |
else: | |
prediction = self.pipeline(inputs) | |
# postprocess the prediction | |
return prediction | |