{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x795124aa4f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723454149510199712, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAABRNcD+oibC+KFR8vpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIQWyULUkOaMAWyUS8iMAXSUR0B2jKA+Y+jedX2UKGgGR8CHa5zQu27WaAdLyGgIR0B2kDiOvMbFdX2UKGgGR8CMgA9lEqlQaAdLyGgIR0B2k9flZHNHdX2UKGgGR8CVr9aGpMpPaAdLyGgIR0B2l2x1PnB+dX2UKGgGR8CU+fWUKRdQaAdLyGgIR0B2mytLcsUZdX2UKGgGR8CIQ2HGjsUqaAdLyGgIR0B2nrhGYrrgdX2UKGgGR8CUcb3QUpNLaAdLyGgIR0B2olFH8TBZdX2UKGgGR8CHnmjVx0dSaAdLyGgIR0B2phCF9KEndX2UKGgGR8CDpra9sabXaAdLyGgIR0B2v6Ll3hXKdX2UKGgGR8CIWb4wAU+LaAdLyGgIR0B2w0CwKSgXdX2UKGgGR8CM0XQkX1rZaAdLyGgIR0B2xsF0PpY+dX2UKGgGR8CNGBgrpaA4aAdLyGgIR0B2ylGd7OVxdX2UKGgGR8CEZKEVWS2ZaAdLyGgIR0B2zg+u/1xsdX2UKGgGR8CJDbviLl3haAdLyGgIR0B20a7iADq4dX2UKGgGR8CH69xxT850aAdLyGgIR0B21UBS1maqdX2UKGgGR8B/RPh86V+raAdLyGgIR0B22M0BOpKjdX2UKGgGR8CIBQouwosqaAdLyGgIR0B23GZuyeI3dX2UKGgGR8CIBKwUxmCiaAdLyGgIR0B23+0E5hjOdX2UKGgGR8CNMvSZ0CA+aAdLyGgIR0B2+aLP2PDHdX2UKGgGR8CEV+rcTJyRaAdLyGgIR0B2/Vga3qiXdX2UKGgGR8CIPNDcdo38aAdLyGgIR0B3AOvV3EAHdX2UKGgGR8CNQEwQDmr9aAdLyGgIR0B3BHmr8zhxdX2UKGgGR8CQSvjvd/KAaAdLyGgIR0B3CAd7v5P/dX2UKGgGR8CRCDSDh99daAdLyGgIR0B3C4xcmjTKdX2UKGgGR8CD9lux8lXzaAdLyGgIR0B3Dy9CeEqUdX2UKGgGR8CKnUUmD15CaAdLyGgIR0B3ErI3irDJdX2UKGgGR8CIbPbmEGqxaAdLyGgIR0B3Fi8tf5UMdX2UKGgGR8CCoU1UEPlNaAdLyGgIR0B3GbQa72+PdX2UKGgGR8CAEyIwdsBRaAdLyGgIR0B3OrJ2dNFjdX2UKGgGR8CNg+QlruYyaAdLyGgIR0B3QAPd2xIKdX2UKGgGR8CIZkSZBsyjaAdLyGgIR0B3RQpsoDxLdX2UKGgGR8B5BARL9MsZaAdLyGgIR0B3Sm5LAYYSdX2UKGgGR8CRbEnRLK3eaAdLyGgIR0B3Tmkxh2GJdX2UKGgGR8CNUbHbRF7VaAdLyGgIR0B3UiDdxhlUdX2UKGgGR8CKKbZYgaFVaAdLyGgIR0B3VZRl6JIldX2UKGgGR8CQivwkgOjJaAdLyGgIR0B3WQZ/CqIadX2UKGgGR8CHZyEmplz2aAdLyGgIR0B3XJjoZAIIdX2UKGgGR8CH/0ESM98raAdLyGgIR0B3YBiDujREdX2UKGgGR8CCSSPtlZoxaAdLyGgIR0B3Y9IiC8ODdX2UKGgGR8CIBLs3Q2MsaAdLyGgIR0B3fP/5tWMkdX2UKGgGR8CIPIOyVv/BaAdLyGgIR0B3gIvGp++edX2UKGgGR8CHoxyxRl6JaAdLyGgIR0B3hDt7a7EpdX2UKGgGR8CQi9pz90ihaAdLyGgIR0B3iDbItDlYdX2UKGgGR8CMZyl3Qla9aAdLyGgIR0B3i9j6N2kjdX2UKGgGR8CNTNSLqD9PaAdLyGgIR0B3j3CpFTegdX2UKGgGR8CIOxYV6/qPaAdLyGgIR0B3kzSE12q2dX2UKGgGR8CMXZDtw71aaAdLyGgIR0B3lrGkvboKdX2UKGgGR8CH6JWCEpRXaAdLyGgIR0B3mkjyFwkxdX2UKGgGR8CN0RjwQUYbaAdLyGgIR0B3ndalk6LgdX2UKGgGR8B//BQk5ZKWaAdLyGgIR0B3t0yad+XrdX2UKGgGR8B4dpKRMewLaAdLyGgIR0B3ut1HOKO1dX2UKGgGR8CErumMwUQDaAdLyGgIR0B3vn6UJOWTdX2UKGgGR8CLym9Pk7wKaAdLyGgIR0B3wi8pTdcjdX2UKGgGR8B4kZy8zyjIaAdLyGgIR0B3xeCDmKZVdX2UKGgGR8CNZSXCTEBKaAdLyGgIR0B3yW4RVZLadX2UKGgGR8CNds2ZRbbDaAdLyGgIR0B3zQzvZyuIdX2UKGgGR8CEecUD+zdDaAdLyGgIR0B30KtMfzSUdX2UKGgGR8CNOMHgxagVaAdLyGgIR0B31HIT4+KTdX2UKGgGR8CAOtLteD3/aAdLyGgIR0B32AW56MR6dX2UKGgGR8CDYcPatcOcaAdLyGgIR0B38+9US7GvdX2UKGgGR8CGbmdFvybyaAdLyGgIR0B3+HeXRgJDdX2UKGgGR8CEDECtA9mpaAdLyGgIR0B3/PQQcxTLdX2UKGgGR8CEVVlS0jTsaAdLyGgIR0B4Ab15B1LbdX2UKGgGR8CEA/olD4QCaAdLyGgIR0B4BwPI4lyBdX2UKGgGR8CAQyC2+fyxaAdLyGgIR0B4DBhmXgLrdX2UKGgGR8CEZA91U2k0aAdLyGgIR0B4ESYZ2pyZdX2UKGgGR8CEBLM23rleaAdLyGgIR0B4Fpq8DjiodX2UKGgGR8B4cibBoEjgaAdLyGgIR0B4Go2tMfzSdX2UKGgGR8CAIzS/j81oaAdLyGgIR0B4HghQm/nGdX2UKGgGR8CFH0dNnGsFaAdLyGgIR0B4N0Oz6ab4dX2UKGgGR8CKYuclPacqaAdLyGgIR0B4Os6o2n89dX2UKGgGR8CAGY4DLbHqaAdLyGgIR0B4Pl6KLsKLdX2UKGgGR8B+qoFLWZqmaAdLyGgIR0B4Qf9Nvfj0dX2UKGgGR8CEeDW2gFotaAdLyGgIR0B4RYlAu7HydX2UKGgGR8B4aByU9pyqaAdLyGgIR0B4STZRKpT/dX2UKGgGR8CAGwFcpsoEaAdLyGgIR0B4TMjX4CZGdX2UKGgGR8CQQmESM98raAdLyGgIR0B4UE6aLGaQdX2UKGgGR8CIiHpblijMaAdLyGgIR0B4U89eQdS3dX2UKGgGR8CBRLXoTwlTaAdLyGgIR0B4V2yTpxFRdX2UKGgGR8CEAsh/y5I6aAdLyGgIR0B4WxYHPeHjdX2UKGgGR8CKgugQHzH0aAdLyGgIR0B4dBQP7N0OdX2UKGgGR8CPS1fHggoxaAdLyGgIR0B4d5SzgMtsdX2UKGgGR8B4rQNZvDP4aAdLyGgIR0B4e1ruYx+KdX2UKGgGR8CAC1NKyv9taAdLyGgIR0B4fw1NxlxwdX2UKGgGR8B8iHBbfP5YaAdLyGgIR0B4gqOAAhjfdX2UKGgGR8CAbDZg5R0maAdLyGgIR0B4hiWjXWe6dX2UKGgGR8CERXdUKiPAaAdLyGgIR0B4idL8JlasdX2UKGgGR8CILyUcGTs6aAdLyGgIR0B4jXLt/nW8dX2UKGgGR8CAjo4ZMtbtaAdLyGgIR0B4kQfPomojdX2UKGgGR8CEkwyjYZl4aAdLyGgIR0B4lNWYF7ladX2UKGgGR8CAQmlTm4iHaAdLyGgIR0B4rmLDQ7cPdX2UKGgGR8CEYUqEOAiFaAdLyGgIR0B4sfhqCYkWdX2UKGgGR8CJlAkJrtVraAdLyGgIR0B4tX3yqdYodX2UKGgGR8ByHwUIsyzpaAdLyGgIR0B4udMPBi1BdX2UKGgGR8B4NgaisXBQaAdLyGgIR0B4vsTEit7sdX2UKGgGR8CIlgM2FWXDaAdLyGgIR0B4w2zyBkI5dX2UKGgGR8CAFaO+7Dl6aAdLyGgIR0B4x+NR3u/ldX2UKGgGR8CAGHW+49X+aAdLyGgIR0B4zLjKgZjydX2UKGgGR8B4m5UNrj5saAdLyGgIR0B40cDEFW4mdX2UKGgGR8B4Vxc2R7qqaAdLyGgIR0B41satLcsUdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}