Dionyssos's picture
debug static on sound prompts
8e60374
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import typing as tp
import warnings
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
'time_group_norm'])
def apply_parametrization_norm(module: nn.Module, norm: str = 'none'):
assert norm in CONV_NORMALIZATIONS
if norm == 'weight_norm':
return weight_norm(module)
elif norm == 'spectral_norm':
return spectral_norm(module)
else:
# We already check was in CONV_NORMALIZATION, so any other choice
# doesn't need reparametrization.
return module
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
padding_total: int = 0) -> int:
"""See `pad_for_conv1d`."""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
def __init__(self, *args,
causal = False, norm = 'none',
norm_kwargs = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) # norm = weight_norm
def forward(self, x):
return self.conv(x)
class NormConvTranspose1d(nn.Module):
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
def forward(self, x):
return self.convtr(x)
class StreamableConv1d(nn.Module):
"""Conv1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
causal=False,
norm='none',
norm_kwargs={},
pad_mode='reflect'):
super().__init__()
# warn user on unusual setup between dilation and stride
# if stride > 1 and dilation > 1:
# warnings.warn("StreamableConv1d has been initialized with stride > 1 and dilation > 1"
# f" (kernel_size={kernel_size} stride={stride}, dilation={dilation}).")
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
dilation=dilation, groups=groups, bias=bias, causal=causal,
norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.pad_mode = pad_mode
def forward(self, x):
B, C, T = x.shape
kernel_size = self.conv.conv.kernel_size[0]
stride = self.conv.conv.stride[0]
dilation = self.conv.conv.dilation[0]
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
padding_total = kernel_size - stride
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
if self.causal:
# Left padding for causal
# x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
print('\n \n\n\nn\n\n\nnCAUSAL N\n\n\n')
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
# print(f'\n \/n\n\n\nANTICaus N {x.shape=}\n')
# ANTICaus CONV OLD_SHAPE=torch.Size([1, 512, 280]) x.shape=torch.Size([1, 512, 282])
return self.conv(x)
class StreamableConvTranspose1d(nn.Module):
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs: tp.Dict[str, tp.Any] = {}):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.trim_right_ratio = trim_right_ratio
assert self.causal or self.trim_right_ratio == 1., \
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
def forward(self, x):
kernel_size = self.convtr.convtr.kernel_size[0]
stride = self.convtr.convtr.stride[0]
padding_total = kernel_size - stride
y = self.convtr(x)
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
# removed at the very end, when keeping only the right length for the output,
# as removing it here would require also passing the length at the matching layer
# in the encoder.
if self.causal:
print('\n \n\n\nn\n\n\nnCAUSAL T\n\n\n\n\n')
else:
# Asymmetric padding required for odd strides
# print('\n \n\n\nn\n\n\nnANTICAUSAL T\n\n\n')
padding_right = padding_total // 2
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
return y