--- language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - gglabs/stt-test-1223 metrics: - wer model-index: - name: Whisper Small ko results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: custom type: gglabs/stt-test-1223 args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 52.71739130434783 --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 1.4327 - Wer: 52.7174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9079 | 0.2 | 10 | 1.4327 | 52.7174 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1