--- tags: - generated_from_trainer model-index: - name: ruBert-base-finetuned-pos results: [] license: mit datasets: - disk0dancer/ru_sentances_pos language: - ru metrics: - accuracy - f1 pipeline_tag: token-classification library_name: transformers --- # ruBert-base-finetuned-pos This model was finetuned from [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on the [disk0dancer/ru_sentances_pos](https://hf.co/datasets/disk0dancer/ru_sentances_pos) dataset. All docs and code can be found on [Github](https://github.com/disk0Dancer/rubert-finetuned-pos). It achieves the following results on the evaluation set: - eval_loss: 0.1544 - eval_precision: 0.8561 - eval_recall: 0.8723 - eval_f1: 0.8642 - eval_accuracy: 0.8822 - eval_runtime: 0.2476 - eval_samples_per_second: 80.775 - eval_steps_per_second: 8.078 - step: 0 ## Model description Bert + Dence + Softmax + Dropout ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f73a86f9678931cad645df/fnHI0M7WAQ1AkgfXOTIx6.png) ## Training and evaluation data Model Trained for Token Classification ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.39.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2 ## Cite ``` @misc{churakov2024postagginghighlightskeletalstructure, title={POS-tagging to highlight the skeletal structure of sentences}, author={Grigorii Churakov}, year={2024}, eprint={2411.14393}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.14393}, } ```