--- license: mit tags: - generated_from_trainer model-index: - name: bart-pt-asqa-ob results: [] --- # bart-pt-asqa-ob This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset. It achieves the following results on the evaluation set: - Loss: 1.6901 - Rougelsum: 20.7527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 355 | 1.6295 | 17.7502 | | 1.6407 | 2.0 | 710 | 1.6144 | 18.5897 | | 1.4645 | 3.0 | 1065 | 1.6222 | 19.3778 | | 1.4645 | 4.0 | 1420 | 1.6522 | 19.6941 | | 1.3678 | 5.0 | 1775 | 1.6528 | 20.3110 | | 1.2671 | 6.0 | 2130 | 1.6879 | 20.6112 | | 1.2671 | 7.0 | 2485 | 1.6901 | 20.7527 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1