--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7a2c287f-1ebe-405a-8274-6ba9675e1375 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9fc354242cd5d2f2_train_data.json ds_type: json format: custom path: /workspace/input_data/9fc354242cd5d2f2_train_data.json type: field_input: postfix field_instruction: prefix field_output: ground_truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 3 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 6 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik2987/7a2c287f-1ebe-405a-8274-6ba9675e1375 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/9fc354242cd5d2f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7a2c287f-1ebe-405a-8274-6ba9675e1375 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7a2c287f-1ebe-405a-8274-6ba9675e1375 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# 7a2c287f-1ebe-405a-8274-6ba9675e1375 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.9855 | 0.0087 | 1 | 12.9301 | | 5.3507 | 0.0520 | 6 | 4.7709 | | 2.7712 | 0.1040 | 12 | 3.3651 | | 2.2764 | 0.1561 | 18 | 2.9537 | | 2.5649 | 0.2081 | 24 | 2.8330 | | 2.1117 | 0.2601 | 30 | 2.6876 | | 2.2774 | 0.3121 | 36 | 2.6305 | | 1.9406 | 0.3642 | 42 | 2.5846 | | 2.4657 | 0.4162 | 48 | 2.5755 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1