---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7a2c287f-1ebe-405a-8274-6ba9675e1375
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9fc354242cd5d2f2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9fc354242cd5d2f2_train_data.json
type:
field_input: postfix
field_instruction: prefix
field_output: ground_truth
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 3
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik2987/7a2c287f-1ebe-405a-8274-6ba9675e1375
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/9fc354242cd5d2f2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7a2c287f-1ebe-405a-8274-6ba9675e1375
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7a2c287f-1ebe-405a-8274-6ba9675e1375
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: null
```
# 7a2c287f-1ebe-405a-8274-6ba9675e1375
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 12.9855 | 0.0087 | 1 | 12.9301 |
| 5.3507 | 0.0520 | 6 | 4.7709 |
| 2.7712 | 0.1040 | 12 | 3.3651 |
| 2.2764 | 0.1561 | 18 | 2.9537 |
| 2.5649 | 0.2081 | 24 | 2.8330 |
| 2.1117 | 0.2601 | 30 | 2.6876 |
| 2.2774 | 0.3121 | 36 | 2.6305 |
| 1.9406 | 0.3642 | 42 | 2.5846 |
| 2.4657 | 0.4162 | 48 | 2.5755 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1