File size: 21,650 Bytes
2b18e88
 
 
db6ca6b
a5ccd0f
db6ca6b
2b18e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6ca6b
 
 
a5ccd0f
2b18e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from typing import Optional, Tuple, Union

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.controlnet import ControlNetModel, zero_module
from diffusers.models.embeddings import (
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
from diffusers.models.unets.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    DownBlock2D,
    UNetMidBlock2D,
    UNetMidBlock2DCrossAttn,
    get_down_block,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import logging
from torch import nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class ResBlock(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(dim, dim, 3, 1, 1),
            nn.GroupNorm(num_groups=8, num_channels=dim),
            nn.SiLU(inplace=True),
            nn.Conv2d(dim, dim, 3, 1, 1),
        )

    def forward(self, x):
        return x + self.conv(x)


class NeuralTextureEncoder(nn.Module):
    def __init__(self, in_dim=3, out_dim=16, dims=(32, 64, 128), groups=8):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_dim, dims[0], kernel_size=3, padding=1),
            nn.SiLU(inplace=True),

            # down 1
            nn.Conv2d(dims[0], dims[1], kernel_size=3, padding=1, stride=2),
            nn.GroupNorm(num_groups=groups, num_channels=dims[1]),
            nn.SiLU(inplace=True),

            # down 2
            nn.Conv2d(dims[1], dims[2], kernel_size=3, padding=1, stride=2),
            nn.GroupNorm(num_groups=groups, num_channels=dims[2]),
            nn.SiLU(inplace=True),

            # res blocks
            ResBlock(dims[2]),
            ResBlock(dims[2]),
            ResBlock(dims[2]),
            ResBlock(dims[2]),

            # up 1
            nn.ConvTranspose2d(dims[2], dims[1], kernel_size=4, padding=1, stride=2),
            nn.GroupNorm(num_groups=groups, num_channels=dims[1]),
            nn.SiLU(inplace=True),

            # up 2
            nn.ConvTranspose2d(dims[1], dims[0], kernel_size=4, padding=1, stride=2),
            nn.GroupNorm(num_groups=groups, num_channels=dims[0]),
            nn.SiLU(inplace=True),

            # out
            nn.Conv2d(dims[0], out_dim, kernel_size=3, padding=1),
        )
        self.gradient_checkpointing = False

    def forward(self, x):
        if self.training and self.gradient_checkpointing:
            x = checkpoint(self.model, x, use_reentrant=False)
        else:
            x = self.model(x)
        return x


class NeuralTextureEmbedding(nn.Module):
    def __init__(
            self,
            conditioning_embedding_channels: int,
            conditioning_channels: int = 3,
            block_out_channels: Tuple[int] = (16, 32, 96, 256),
            shading_hint_channels: int = 12,  # diffuse + 3 * ggx
    ):
        super().__init__()
        self.conditioning_channels = conditioning_channels
        self.shading_hint_channels = shading_hint_channels

        self.conv_in = nn.Conv2d(shading_hint_channels, block_out_channels[0], kernel_size=3, padding=1)
        self.neural_texture_encoder = NeuralTextureEncoder(in_dim=conditioning_channels, out_dim=shading_hint_channels)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))

        self.conv_out = zero_module(
            nn.Conv2d(
                block_out_channels[-1],
                conditioning_embedding_channels,
                kernel_size=3,
                padding=1
            )
        )

    def forward(self, all_conditioning):
        # conditioning: [BS, 4 + 12, 512, 512]  # RGB ref image + shading hint (diffuse + 3 * ggx)
        conditioning, shading_hint = torch.split(
            all_conditioning,
            [self.conditioning_channels, self.shading_hint_channels],
            dim=1
        )
        embedding = self.neural_texture_encoder(conditioning)  # [BS, 15, 512, 512]

        # multiply shading hint to each channel
        embedding = embedding * shading_hint
        embedding = self.conv_in(embedding)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class NeuralTextureControlNetModel(ControlNetModel):
    """
    A Neural Texture ControlNet Model.

    Args:
        in_channels (`int`, defaults to 4, RGBA):
            The number of channels in the input sample.
        shading_hint_channels (`int`, defaults to 12): channel number of hints
    """

    @register_to_config
    def __init__(
            self,
            in_channels: int = 4,
            conditioning_channels: int = 3,
            flip_sin_to_cos: bool = True,
            freq_shift: int = 0,
            down_block_types: Tuple[str, ...] = (
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "DownBlock2D",
            ),
            mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
            only_cross_attention: Union[bool, Tuple[bool]] = False,
            block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
            layers_per_block: int = 2,
            downsample_padding: int = 1,
            mid_block_scale_factor: float = 1,
            act_fn: str = "silu",
            norm_num_groups: Optional[int] = 32,
            norm_eps: float = 1e-5,
            cross_attention_dim: int = 1280,
            transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
            encoder_hid_dim: Optional[int] = None,
            encoder_hid_dim_type: Optional[str] = None,
            attention_head_dim: Union[int, Tuple[int, ...]] = 8,
            num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
            use_linear_projection: bool = False,
            class_embed_type: Optional[str] = None,
            addition_embed_type: Optional[str] = None,
            addition_time_embed_dim: Optional[int] = None,
            num_class_embeds: Optional[int] = None,
            upcast_attention: bool = False,
            resnet_time_scale_shift: str = "default",
            projection_class_embeddings_input_dim: Optional[int] = None,
            controlnet_conditioning_channel_order: str = "rgb",
            conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
            global_pool_conditions: bool = False,
            addition_embed_type_num_heads: int = 64,
            shading_hint_channels: int = 12,
    ):
        # avoid running __init__() of the original ControlNetModel
        super(ModelMixin, self).__init__()
        super(ConfigMixin, self).__init__()
        super(FromOriginalModelMixin, self).__init__()

        num_attention_heads = num_attention_heads or attention_head_dim

        assert controlnet_conditioning_channel_order == "rgb", "Only RGB channel order is supported."
        assert global_pool_conditions is False, "Global pooling conditions is not supported."

        # Check inputs
        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        # input
        conv_in_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
        )

        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )

        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
        else:
            self.encoder_hid_proj = None

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        else:
            self.class_embedding = None

        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
        elif addition_embed_type == "text_image":
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)

        elif addition_embed_type is not None:
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")

        # control net conditioning embedding
        self.controlnet_cond_embedding = NeuralTextureEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=conditioning_embedding_out_channels,
            conditioning_channels=conditioning_channels,
            shading_hint_channels=shading_hint_channels,
        )

        self.down_blocks = nn.ModuleList([])
        self.controlnet_down_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        # down
        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_down_blocks.append(controlnet_block)

        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[i],
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                downsample_padding=downsample_padding,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
            self.down_blocks.append(down_block)

            for _ in range(layers_per_block):
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

        # mid
        mid_block_channel = block_out_channels[-1]

        controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_mid_block = controlnet_block

        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                transformer_layers_per_block=transformer_layers_per_block[-1],
                in_channels=mid_block_channel,
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2D":
            self.mid_block = UNetMidBlock2D(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                num_layers=0,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                add_attention=False,
            )
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")

    @classmethod
    def from_unet(
            cls,
            unet: UNet2DConditionModel,
            controlnet_conditioning_channel_order: str = "rgb",
            conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
            load_weights_from_unet: bool = True,
            shading_hint_channels: int = 12,
            conditioning_channels: int = 4,
    ):
        r"""
        Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].

        Parameters:
            unet (`UNet2DConditionModel`):
                The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
                where applicable.
        """
        transformer_layers_per_block = (
            unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
        )
        encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
        encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
        addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
        addition_time_embed_dim = (
            unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
        )

        controlnet = cls(
            encoder_hid_dim=encoder_hid_dim,
            encoder_hid_dim_type=encoder_hid_dim_type,
            addition_embed_type=addition_embed_type,
            addition_time_embed_dim=addition_time_embed_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=unet.config.in_channels,
            flip_sin_to_cos=unet.config.flip_sin_to_cos,
            freq_shift=unet.config.freq_shift,
            down_block_types=unet.config.down_block_types,
            only_cross_attention=unet.config.only_cross_attention,
            block_out_channels=unet.config.block_out_channels,
            layers_per_block=unet.config.layers_per_block,
            downsample_padding=unet.config.downsample_padding,
            mid_block_scale_factor=unet.config.mid_block_scale_factor,
            act_fn=unet.config.act_fn,
            norm_num_groups=unet.config.norm_num_groups,
            norm_eps=unet.config.norm_eps,
            cross_attention_dim=unet.config.cross_attention_dim,
            attention_head_dim=unet.config.attention_head_dim,
            num_attention_heads=unet.config.num_attention_heads,
            use_linear_projection=unet.config.use_linear_projection,
            class_embed_type=unet.config.class_embed_type,
            num_class_embeds=unet.config.num_class_embeds,
            upcast_attention=unet.config.upcast_attention,
            resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
            projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
            controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
            conditioning_embedding_out_channels=conditioning_embedding_out_channels,
            shading_hint_channels=shading_hint_channels,
            conditioning_channels=conditioning_channels,
        )

        if load_weights_from_unet:
            controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
            controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
            controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())

            if controlnet.class_embedding:
                controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())

            controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
            controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())

        return controlnet

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, NeuralTextureEncoder)):
            module.gradient_checkpointing = value