Upload Stable-diffusion using SD-Hub extension
Browse files- .gitattributes +1 -0
- Stable-diffusion/Put Stable Diffusion checkpoints here.txt +0 -0
- Stable-diffusion/ui/.gitattributes +62 -0
- Stable-diffusion/ui/1.wav +0 -0
- Stable-diffusion/ui/2.wav +0 -0
- Stable-diffusion/ui/3.wav +0 -0
- Stable-diffusion/ui/4x-AnimeSharp.pth +3 -0
- Stable-diffusion/ui/4x-UltraSharp.pth +3 -0
- Stable-diffusion/ui/4x_NMKD-Superscale-SP_178000_G.pth +3 -0
- Stable-diffusion/ui/4x_RealisticRescaler_100000_G.pth +3 -0
- Stable-diffusion/ui/4x_foolhardy_Remacri.pth +3 -0
- Stable-diffusion/ui/8x_RealESRGAN.pth +3 -0
- Stable-diffusion/ui/ADetailer.zip +3 -0
- Stable-diffusion/ui/BackToNature.mp3 +3 -0
- Stable-diffusion/ui/README.md +3 -0
- Stable-diffusion/ui/asd.zip +3 -0
- Stable-diffusion/ui/ass.zip +3 -0
- Stable-diffusion/ui/cloudflared.py +10 -0
- Stable-diffusion/ui/config.json +440 -0
- Stable-diffusion/ui/custom_hires_fix.py +416 -0
- Stable-diffusion/ui/embeddings.zip +3 -0
- Stable-diffusion/ui/encrypt_image.py +206 -0
- Stable-diffusion/ui/encrypt_images_info.js +27 -0
- Stable-diffusion/ui/hashes.py +81 -0
- Stable-diffusion/ui/lora_block_weight.py +1152 -0
- Stable-diffusion/ui/nenen88.py +52 -0
- Stable-diffusion/ui/venv.py +77 -0
- Stable-diffusion/ui/venv161.py +97 -0
- Stable-diffusion/ui/venv180.py +105 -0
- Stable-diffusion/ui/venv220.py +62 -0
- Stable-diffusion/ui/venv_19-6-2024.py +62 -0
- Stable-diffusion/ui/venvv.py +62 -0
- Stable-diffusion/ui/zzzzzz.safetensors +3 -0
- Stable-diffusion/venv-fusion.tar.lz4 +3 -0
- Stable-diffusion/venv-sd-trainer.tar.lz4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Stable-diffusion/ui/BackToNature.mp3 filter=lfs diff=lfs merge=lfs -text
|
Stable-diffusion/Put Stable Diffusion checkpoints here.txt
ADDED
File without changes
|
Stable-diffusion/ui/.gitattributes
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
BLIP/BLIP.gif filter=lfs diff=lfs merge=lfs -text
|
36 |
+
generative-models/assets/001_with_eval.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
stable-diffusion-stability-ai/assets/stable-inpainting/merged-leopards.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/d2i.gif filter=lfs diff=lfs merge=lfs -text
|
39 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/depth2img01.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/depth2img02.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/merged-0000.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/merged-0004.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
stable-diffusion-stability-ai/assets/stable-samples/depth2img/merged-0005.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
stable-diffusion-stability-ai/assets/stable-samples/img2img/upscaling-in.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
stable-diffusion-stability-ai/assets/stable-samples/img2img/upscaling-out.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
stable-diffusion-stability-ai/assets/stable-samples/stable-unclip/unclip-variations.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
stable-diffusion-stability-ai/assets/stable-samples/stable-unclip/unclip-variations_noise.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0001.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0002.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0003.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0004.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0005.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/768/merged-0006.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/merged-0001.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/merged-0003.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/merged-0005.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/merged-0006.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
stable-diffusion-stability-ai/assets/stable-samples/txt2img/merged-0007.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
stable-diffusion-stability-ai/assets/stable-samples/upscaling/merged-dog.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
stable-diffusion-stability-ai/assets/stable-samples/upscaling/sampled-bear-x4.png filter=lfs diff=lfs merge=lfs -text
|
61 |
+
stable-diffusion-stability-ai/assets/stable-samples/upscaling/snow-leopard-x4.png filter=lfs diff=lfs merge=lfs -text
|
62 |
+
BackToNature.mp3 filter=lfs diff=lfs merge=lfs -text
|
Stable-diffusion/ui/1.wav
ADDED
Binary file (326 kB). View file
|
|
Stable-diffusion/ui/2.wav
ADDED
Binary file (326 kB). View file
|
|
Stable-diffusion/ui/3.wav
ADDED
Binary file (326 kB). View file
|
|
Stable-diffusion/ui/4x-AnimeSharp.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7a7de2dafd7331c1992862bbbcd9e9712a9f9f8e6303f0aaa59b4341d359bab
|
3 |
+
size 67010245
|
Stable-diffusion/ui/4x-UltraSharp.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5812231fc936b42af08a5edba784195495d303d5b3248c24489ef0c4021fe01
|
3 |
+
size 66961958
|
Stable-diffusion/ui/4x_NMKD-Superscale-SP_178000_G.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d1b0078fe71446e0469d8d4df59e96baa80d83cda600d68237d655830821bcc
|
3 |
+
size 66958607
|
Stable-diffusion/ui/4x_RealisticRescaler_100000_G.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7381a1229143c9301a94421b610d95eb312e2555743cc9e80099a0e15ac5bd3b
|
3 |
+
size 134051293
|
Stable-diffusion/ui/4x_foolhardy_Remacri.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1a73bd89c2da1ae494774746398689048b5a892bd9653e146713f9df8bca86a
|
3 |
+
size 67025055
|
Stable-diffusion/ui/8x_RealESRGAN.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b72fb469d12f05a4770813d2603eb1b550f40df6fb8b37d6c7bc2db3d2bff5e
|
3 |
+
size 67189359
|
Stable-diffusion/ui/ADetailer.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54efbdaea342f5fef3aad4f5a9c967b0ddd4db1087991529e355f3cb5ffb0b15
|
3 |
+
size 148437591
|
Stable-diffusion/ui/BackToNature.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca2d3fc1121250e3c98019ea7a3f96168c9d547884e2fa316f305dfba8c26a42
|
3 |
+
size 4902735
|
Stable-diffusion/ui/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: creativeml-openrail-m
|
3 |
+
---
|
Stable-diffusion/ui/asd.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e22e725217abb4b6d8079b6be20c401393ab0945cc60c274a73e7c30b2139cf4
|
3 |
+
size 35111
|
Stable-diffusion/ui/ass.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91ef37e889b2a5ee158c155afe6636bfce6fa5c2ccce2a06e872b0945680d6d
|
3 |
+
size 32885
|
Stable-diffusion/ui/cloudflared.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, sys, re, cloudpickle, shlex
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
port = 7860
|
5 |
+
tunnel_class = cloudpickle.load(open("/kaggle/working/new_tunnel", "rb"), encoding="utf-8")
|
6 |
+
tunnel = tunnel_class(port)
|
7 |
+
tunnel.add_tunnel(command=f"cl tunnel --url localhost:{port}", name="cl", pattern=re.compile(r"[\w-]+\.trycloudflare\.com"))
|
8 |
+
asd = f'/kaggle/venv/bin/python3 launch.py {" ".join(sys.argv[1:])}'
|
9 |
+
with tunnel:
|
10 |
+
subprocess.call(shlex.split(asd))
|
Stable-diffusion/ui/config.json
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"gradio_theme": "NoCrypt/miku",
|
3 |
+
"lora_preferred_name": "Filename",
|
4 |
+
"samples_filename_pattern": "[datetime<%M%S>]",
|
5 |
+
"show_progressbar": true,
|
6 |
+
"show_progress_grid": true,
|
7 |
+
"show_progress_every_n_steps": 2,
|
8 |
+
"live_previews_enable": true,
|
9 |
+
"live_previews_image_format": "webp",
|
10 |
+
"live_preview_allow_lowvram_full": false,
|
11 |
+
"live_preview_content": "Prompt",
|
12 |
+
"live_preview_refresh_period": 100.0,
|
13 |
+
"live_preview_fast_interrupt": true,
|
14 |
+
"quicksettings_list": [
|
15 |
+
"sd_model_checkpoint",
|
16 |
+
"sd_vae",
|
17 |
+
"CLIP_stop_at_last_layers"
|
18 |
+
],
|
19 |
+
"ui_tab_order": [
|
20 |
+
"txt2img",
|
21 |
+
"img2img",
|
22 |
+
"Extras",
|
23 |
+
"Fast PNG Info",
|
24 |
+
"SuperMerger"
|
25 |
+
],
|
26 |
+
"hidden_tabs": [
|
27 |
+
"PNG Info",
|
28 |
+
"Train",
|
29 |
+
"Checkpoint Merger"
|
30 |
+
],
|
31 |
+
"ldsr_steps": 100,
|
32 |
+
"ldsr_cached": false,
|
33 |
+
"SCUNET_tile": 256,
|
34 |
+
"SCUNET_tile_overlap": 8,
|
35 |
+
"SWIN_tile": 192,
|
36 |
+
"SWIN_tile_overlap": 8,
|
37 |
+
"SWIN_torch_compile": false,
|
38 |
+
"hypertile_enable_unet": false,
|
39 |
+
"hypertile_enable_unet_secondpass": false,
|
40 |
+
"hypertile_max_depth_unet": 3,
|
41 |
+
"hypertile_max_tile_unet": 256,
|
42 |
+
"hypertile_swap_size_unet": 3,
|
43 |
+
"hypertile_enable_vae": false,
|
44 |
+
"hypertile_max_depth_vae": 3,
|
45 |
+
"hypertile_max_tile_vae": 128,
|
46 |
+
"hypertile_swap_size_vae": 3,
|
47 |
+
"bmab_debug_print": false,
|
48 |
+
"bmab_debug_logging": false,
|
49 |
+
"bmab_show_extends": false,
|
50 |
+
"bmab_test_function": false,
|
51 |
+
"bmab_keep_original_setting": false,
|
52 |
+
"bmab_save_image_before_process": false,
|
53 |
+
"bmab_save_image_after_process": false,
|
54 |
+
"bmab_for_developer": false,
|
55 |
+
"bmab_use_dino_predict": false,
|
56 |
+
"bmab_max_detailing_element": 0,
|
57 |
+
"bmab_detail_full": true,
|
58 |
+
"bmab_optimize_vram": "None",
|
59 |
+
"bmab_mask_model": "sam_vit_b",
|
60 |
+
"bmab_use_specific_model": false,
|
61 |
+
"bmab_model": "",
|
62 |
+
"bmab_cn_openpose": "control_v11p_sd15_openpose_fp16 [73c2b67d]",
|
63 |
+
"bmab_cn_lineart": "control_v11p_sd15_lineart_fp16 [5c23b17d]",
|
64 |
+
"bmab_cn_inpaint": "control_v11p_sd15_inpaint_fp16 [be8bc0ed]",
|
65 |
+
"bmab_cn_tile_resample": "control_v11f1e_sd15_tile_fp16 [3b860298]",
|
66 |
+
"bmab_cn_inpaint_depth_hand": "control_sd15_inpaint_depth_hand_fp16 [09456e54]",
|
67 |
+
"bmab_cn_ipadapter": "ip-adapter-plus_sd15 [836b5c2e]",
|
68 |
+
"bmab_additional_checkpoint_path": "",
|
69 |
+
"ad_max_models": 4,
|
70 |
+
"ad_extra_models_dir": "",
|
71 |
+
"ad_save_images_dir": "",
|
72 |
+
"ad_save_previews": false,
|
73 |
+
"ad_save_images_before": false,
|
74 |
+
"ad_only_selected_scripts": true,
|
75 |
+
"ad_script_names": "dynamic_prompting,dynamic_thresholding,lora_block_weight,negpip,wildcard_recursive,wildcards",
|
76 |
+
"ad_bbox_sortby": "None",
|
77 |
+
"ad_same_seed_for_each_tab": false,
|
78 |
+
"ad_dynamic_denoise_power": 0,
|
79 |
+
"ad_match_inpaint_bbox_size": "Off",
|
80 |
+
"arh_javascript_aspect_ratio_show": true,
|
81 |
+
"arh_javascript_aspect_ratio": "1:1, 3:2, 4:3, 5:4, 16:9",
|
82 |
+
"arh_ui_javascript_selection_method": "Aspect Ratios Dropdown",
|
83 |
+
"arh_hide_accordion_by_default": true,
|
84 |
+
"arh_expand_by_default": false,
|
85 |
+
"arh_ui_component_order_key": "MaxDimensionScaler, MinDimensionScaler, PredefinedAspectRatioButtons, PredefinedPercentageButtons",
|
86 |
+
"arh_show_max_width_or_height": false,
|
87 |
+
"arh_max_width_or_height": 1024.0,
|
88 |
+
"arh_show_min_width_or_height": false,
|
89 |
+
"arh_min_width_or_height": 1024.0,
|
90 |
+
"arh_show_predefined_aspect_ratios": false,
|
91 |
+
"arh_predefined_aspect_ratio_use_max_dim": false,
|
92 |
+
"arh_predefined_aspect_ratios": "1:1, 4:3, 16:9, 9:16, 21:9",
|
93 |
+
"arh_show_predefined_percentages": false,
|
94 |
+
"arh_predefined_percentages": "25, 50, 75, 125, 150, 175, 200",
|
95 |
+
"arh_predefined_percentages_display_key": "Incremental/decremental percentage (-50%, +50%)",
|
96 |
+
"control_net_detectedmap_dir": "detected_maps",
|
97 |
+
"control_net_models_path": "",
|
98 |
+
"control_net_modules_path": "",
|
99 |
+
"control_net_unit_count": 3,
|
100 |
+
"control_net_model_cache_size": 2,
|
101 |
+
"control_net_inpaint_blur_sigma": 7,
|
102 |
+
"control_net_no_detectmap": false,
|
103 |
+
"control_net_detectmap_autosaving": false,
|
104 |
+
"control_net_allow_script_control": false,
|
105 |
+
"control_net_sync_field_args": true,
|
106 |
+
"controlnet_show_batch_images_in_ui": false,
|
107 |
+
"controlnet_increment_seed_during_batch": false,
|
108 |
+
"controlnet_disable_openpose_edit": false,
|
109 |
+
"controlnet_disable_photopea_edit": false,
|
110 |
+
"controlnet_photopea_warning": true,
|
111 |
+
"controlnet_ignore_noninpaint_mask": false,
|
112 |
+
"controlnet_clip_detector_on_cpu": false,
|
113 |
+
"controlnet_control_type_dropdown": false,
|
114 |
+
"encrypt_image_is_enable": "Yes",
|
115 |
+
"sd_model_checkpoint": "speciosa25D_v12.safetensors [e1431355af]",
|
116 |
+
"sd_checkpoint_hash": "e1431355afb5d23c727748fafe357ad7359822fb7b4312059a1a583cb468a885",
|
117 |
+
"sd_vae": "sdxl_vae.safetensors",
|
118 |
+
"emphasis": "No norm",
|
119 |
+
"multiple_tqdm": true,
|
120 |
+
"outdir_samples": "",
|
121 |
+
"outdir_txt2img_samples": "outputs/txt2img-images",
|
122 |
+
"outdir_img2img_samples": "outputs/img2img-images",
|
123 |
+
"outdir_extras_samples": "outputs/extras-images",
|
124 |
+
"outdir_grids": "",
|
125 |
+
"outdir_txt2img_grids": "outputs/txt2img-grids",
|
126 |
+
"outdir_img2img_grids": "outputs/img2img-grids",
|
127 |
+
"outdir_save": "log/images",
|
128 |
+
"outdir_init_images": "outputs/init-images",
|
129 |
+
"samples_save": true,
|
130 |
+
"samples_format": "png",
|
131 |
+
"save_images_add_number": true,
|
132 |
+
"save_images_replace_action": "Replace",
|
133 |
+
"grid_save": true,
|
134 |
+
"grid_format": "png",
|
135 |
+
"grid_extended_filename": false,
|
136 |
+
"grid_only_if_multiple": true,
|
137 |
+
"grid_prevent_empty_spots": false,
|
138 |
+
"grid_zip_filename_pattern": "",
|
139 |
+
"n_rows": -1,
|
140 |
+
"font": "",
|
141 |
+
"grid_text_active_color": "#000000",
|
142 |
+
"grid_text_inactive_color": "#999999",
|
143 |
+
"grid_background_color": "#ffffff",
|
144 |
+
"save_images_before_face_restoration": false,
|
145 |
+
"save_images_before_highres_fix": false,
|
146 |
+
"save_images_before_color_correction": false,
|
147 |
+
"save_mask": false,
|
148 |
+
"save_mask_composite": false,
|
149 |
+
"jpeg_quality": 80,
|
150 |
+
"webp_lossless": false,
|
151 |
+
"export_for_4chan": true,
|
152 |
+
"img_downscale_threshold": 4.0,
|
153 |
+
"target_side_length": 4000.0,
|
154 |
+
"img_max_size_mp": 200.0,
|
155 |
+
"use_original_name_batch": true,
|
156 |
+
"use_upscaler_name_as_suffix": false,
|
157 |
+
"save_selected_only": true,
|
158 |
+
"save_write_log_csv": true,
|
159 |
+
"save_init_img": false,
|
160 |
+
"temp_dir": "",
|
161 |
+
"clean_temp_dir_at_start": false,
|
162 |
+
"save_incomplete_images": true,
|
163 |
+
"notification_audio": true,
|
164 |
+
"notification_volume": 100,
|
165 |
+
"save_to_dirs": true,
|
166 |
+
"grid_save_to_dirs": true,
|
167 |
+
"use_save_to_dirs_for_ui": false,
|
168 |
+
"directories_filename_pattern": "[date]",
|
169 |
+
"directories_max_prompt_words": 8,
|
170 |
+
"auto_backcompat": true,
|
171 |
+
"use_old_emphasis_implementation": false,
|
172 |
+
"use_old_karras_scheduler_sigmas": false,
|
173 |
+
"no_dpmpp_sde_batch_determinism": false,
|
174 |
+
"use_old_hires_fix_width_height": false,
|
175 |
+
"hires_fix_use_firstpass_conds": false,
|
176 |
+
"use_old_scheduling": false,
|
177 |
+
"use_downcasted_alpha_bar": false,
|
178 |
+
"refiner_switch_by_sample_steps": false,
|
179 |
+
"lora_functional": false,
|
180 |
+
"extra_networks_show_hidden_directories": true,
|
181 |
+
"extra_networks_dir_button_function": false,
|
182 |
+
"extra_networks_hidden_models": "When searched",
|
183 |
+
"extra_networks_default_multiplier": 1,
|
184 |
+
"extra_networks_card_width": 120.0,
|
185 |
+
"extra_networks_card_height": 120.0,
|
186 |
+
"extra_networks_card_text_scale": 0.6,
|
187 |
+
"extra_networks_card_show_desc": false,
|
188 |
+
"extra_networks_card_description_is_html": false,
|
189 |
+
"extra_networks_card_order_field": "Path",
|
190 |
+
"extra_networks_card_order": "Ascending",
|
191 |
+
"extra_networks_tree_view_style": "Dirs",
|
192 |
+
"extra_networks_tree_view_default_enabled": true,
|
193 |
+
"extra_networks_tree_view_default_width": 180.0,
|
194 |
+
"extra_networks_add_text_separator": " ",
|
195 |
+
"ui_extra_networks_tab_reorder": "",
|
196 |
+
"textual_inversion_print_at_load": false,
|
197 |
+
"textual_inversion_add_hashes_to_infotext": true,
|
198 |
+
"sd_hypernetwork": "None",
|
199 |
+
"sd_lora": "None",
|
200 |
+
"lora_add_hashes_to_infotext": true,
|
201 |
+
"lora_bundled_ti_to_infotext": true,
|
202 |
+
"lora_show_all": false,
|
203 |
+
"lora_hide_unknown_for_versions": [],
|
204 |
+
"lora_in_memory_limit": 0,
|
205 |
+
"lora_not_found_warning_console": false,
|
206 |
+
"lora_not_found_gradio_warning": false,
|
207 |
+
"cross_attention_optimization": "Automatic",
|
208 |
+
"s_min_uncond": 0,
|
209 |
+
"s_min_uncond_all": false,
|
210 |
+
"token_merging_ratio": 0,
|
211 |
+
"token_merging_ratio_img2img": 0,
|
212 |
+
"token_merging_ratio_hr": 0,
|
213 |
+
"pad_cond_uncond": false,
|
214 |
+
"pad_cond_uncond_v0": false,
|
215 |
+
"persistent_cond_cache": true,
|
216 |
+
"batch_cond_uncond": true,
|
217 |
+
"fp8_storage": "Disable",
|
218 |
+
"cache_fp16_weight": false,
|
219 |
+
"hide_samplers": [],
|
220 |
+
"eta_ddim": 0,
|
221 |
+
"eta_ancestral": 1,
|
222 |
+
"ddim_discretize": "uniform",
|
223 |
+
"s_churn": 0,
|
224 |
+
"s_tmin": 0,
|
225 |
+
"s_tmax": 0,
|
226 |
+
"s_noise": 1,
|
227 |
+
"sigma_min": 0.0,
|
228 |
+
"sigma_max": 0.0,
|
229 |
+
"rho": 0.0,
|
230 |
+
"eta_noise_seed_delta": 0,
|
231 |
+
"always_discard_next_to_last_sigma": false,
|
232 |
+
"sgm_noise_multiplier": false,
|
233 |
+
"uni_pc_variant": "bh1",
|
234 |
+
"uni_pc_skip_type": "time_uniform",
|
235 |
+
"uni_pc_order": 3,
|
236 |
+
"uni_pc_lower_order_final": true,
|
237 |
+
"sd_noise_schedule": "Default",
|
238 |
+
"skip_early_cond": 0,
|
239 |
+
"beta_dist_alpha": 0.6,
|
240 |
+
"beta_dist_beta": 0.6,
|
241 |
+
"sd_checkpoints_limit": 1,
|
242 |
+
"sd_checkpoints_keep_in_cpu": true,
|
243 |
+
"sd_checkpoint_cache": 0,
|
244 |
+
"sd_unet": "Automatic",
|
245 |
+
"enable_quantization": false,
|
246 |
+
"enable_batch_seeds": true,
|
247 |
+
"comma_padding_backtrack": 20,
|
248 |
+
"sdxl_clip_l_skip": false,
|
249 |
+
"upcast_attn": false,
|
250 |
+
"randn_source": "GPU",
|
251 |
+
"tiling": false,
|
252 |
+
"hires_fix_refiner_pass": "second pass",
|
253 |
+
"enable_prompt_comments": true,
|
254 |
+
"sd3_enable_t5": false,
|
255 |
+
"sdxl_crop_top": 0.0,
|
256 |
+
"sdxl_crop_left": 0.0,
|
257 |
+
"sdxl_refiner_low_aesthetic_score": 2.5,
|
258 |
+
"sdxl_refiner_high_aesthetic_score": 6.0,
|
259 |
+
"sd_vae_checkpoint_cache": 0,
|
260 |
+
"sd_vae_overrides_per_model_preferences": true,
|
261 |
+
"auto_vae_precision_bfloat16": false,
|
262 |
+
"auto_vae_precision": true,
|
263 |
+
"sd_vae_encode_method": "Full",
|
264 |
+
"sd_vae_decode_method": "Full",
|
265 |
+
"inpainting_mask_weight": 1,
|
266 |
+
"initial_noise_multiplier": 1,
|
267 |
+
"img2img_extra_noise": 0,
|
268 |
+
"img2img_color_correction": false,
|
269 |
+
"img2img_fix_steps": false,
|
270 |
+
"img2img_background_color": "#ffffff",
|
271 |
+
"img2img_editor_height": 720,
|
272 |
+
"img2img_sketch_default_brush_color": "#ffffff",
|
273 |
+
"img2img_inpaint_mask_brush_color": "#ffffff",
|
274 |
+
"img2img_inpaint_sketch_default_brush_color": "#ffffff",
|
275 |
+
"return_mask": false,
|
276 |
+
"return_mask_composite": false,
|
277 |
+
"img2img_batch_show_results_limit": 32,
|
278 |
+
"overlay_inpaint": true,
|
279 |
+
"return_grid": true,
|
280 |
+
"do_not_show_images": false,
|
281 |
+
"js_modal_lightbox": true,
|
282 |
+
"js_modal_lightbox_initially_zoomed": true,
|
283 |
+
"js_modal_lightbox_gamepad": false,
|
284 |
+
"js_modal_lightbox_gamepad_repeat": 250.0,
|
285 |
+
"sd_webui_modal_lightbox_icon_opacity": 1,
|
286 |
+
"sd_webui_modal_lightbox_toolbar_opacity": 0.9,
|
287 |
+
"gallery_height": "",
|
288 |
+
"open_dir_button_choice": "Subdirectory",
|
289 |
+
"enable_pnginfo": true,
|
290 |
+
"save_txt": false,
|
291 |
+
"add_model_name_to_info": true,
|
292 |
+
"add_model_hash_to_info": true,
|
293 |
+
"add_vae_name_to_info": true,
|
294 |
+
"add_vae_hash_to_info": true,
|
295 |
+
"add_user_name_to_info": false,
|
296 |
+
"add_version_to_infotext": true,
|
297 |
+
"disable_weights_auto_swap": true,
|
298 |
+
"infotext_skip_pasting": [],
|
299 |
+
"infotext_styles": "Apply if any",
|
300 |
+
"show_progress_type": "TAESD",
|
301 |
+
"js_live_preview_in_modal_lightbox": true,
|
302 |
+
"prevent_screen_sleep_during_generation": true,
|
303 |
+
"keyedit_precision_attention": 0.1,
|
304 |
+
"keyedit_precision_extra": 0.05,
|
305 |
+
"keyedit_delimiters": ".,\\/!?%^*;:{}=`~() ",
|
306 |
+
"keyedit_delimiters_whitespace": [
|
307 |
+
"Tab",
|
308 |
+
"Carriage Return",
|
309 |
+
"Line Feed"
|
310 |
+
],
|
311 |
+
"keyedit_move": true,
|
312 |
+
"disable_token_counters": false,
|
313 |
+
"include_styles_into_token_counters": true,
|
314 |
+
"extra_options_txt2img": [],
|
315 |
+
"extra_options_img2img": [],
|
316 |
+
"extra_options_cols": 1,
|
317 |
+
"extra_options_accordion": false,
|
318 |
+
"compact_prompt_box": false,
|
319 |
+
"samplers_in_dropdown": true,
|
320 |
+
"dimensions_and_batch_together": true,
|
321 |
+
"sd_checkpoint_dropdown_use_short": false,
|
322 |
+
"hires_fix_show_sampler": false,
|
323 |
+
"hires_fix_show_prompts": false,
|
324 |
+
"txt2img_settings_accordion": false,
|
325 |
+
"img2img_settings_accordion": false,
|
326 |
+
"interrupt_after_current": false,
|
327 |
+
"localization": "None",
|
328 |
+
"ui_reorder_list": [],
|
329 |
+
"gradio_themes_cache": true,
|
330 |
+
"show_progress_in_title": true,
|
331 |
+
"send_seed": true,
|
332 |
+
"send_size": true,
|
333 |
+
"enable_reloading_ui_scripts": false,
|
334 |
+
"api_enable_requests": true,
|
335 |
+
"api_forbid_local_requests": true,
|
336 |
+
"api_useragent": "",
|
337 |
+
"prioritized_callbacks_app_started": [],
|
338 |
+
"prioritized_callbacks_model_loaded": [],
|
339 |
+
"prioritized_callbacks_ui_tabs": [],
|
340 |
+
"prioritized_callbacks_ui_settings": [],
|
341 |
+
"prioritized_callbacks_after_component": [],
|
342 |
+
"prioritized_callbacks_infotext_pasted": [],
|
343 |
+
"prioritized_callbacks_script_unloaded": [],
|
344 |
+
"prioritized_callbacks_before_ui": [],
|
345 |
+
"prioritized_callbacks_on_reload": [],
|
346 |
+
"prioritized_callbacks_list_optimizers": [],
|
347 |
+
"prioritized_callbacks_before_token_counter": [],
|
348 |
+
"prioritized_callbacks_script_before_process": [],
|
349 |
+
"prioritized_callbacks_script_process": [],
|
350 |
+
"prioritized_callbacks_script_before_process_batch": [],
|
351 |
+
"prioritized_callbacks_script_process_batch": [],
|
352 |
+
"prioritized_callbacks_script_postprocess": [],
|
353 |
+
"prioritized_callbacks_script_postprocess_batch": [],
|
354 |
+
"prioritized_callbacks_script_post_sample": [],
|
355 |
+
"prioritized_callbacks_script_on_mask_blend": [],
|
356 |
+
"prioritized_callbacks_script_postprocess_image": [],
|
357 |
+
"prioritized_callbacks_script_postprocess_maskoverlay": [],
|
358 |
+
"prioritized_callbacks_script_after_component": [],
|
359 |
+
"profiling_enable": false,
|
360 |
+
"profiling_activities": [
|
361 |
+
"CPU"
|
362 |
+
],
|
363 |
+
"profiling_record_shapes": true,
|
364 |
+
"profiling_profile_memory": true,
|
365 |
+
"profiling_with_stack": true,
|
366 |
+
"profiling_filename": "trace.json",
|
367 |
+
"auto_launch_browser": "Local",
|
368 |
+
"enable_console_prompts": false,
|
369 |
+
"show_warnings": false,
|
370 |
+
"show_gradio_deprecation_warnings": true,
|
371 |
+
"memmon_poll_rate": 8,
|
372 |
+
"samples_log_stdout": false,
|
373 |
+
"enable_upscale_progressbar": true,
|
374 |
+
"print_hypernet_extra": false,
|
375 |
+
"list_hidden_files": true,
|
376 |
+
"disable_mmap_load_safetensors": false,
|
377 |
+
"hide_ldm_prints": true,
|
378 |
+
"dump_stacks_on_signal": false,
|
379 |
+
"face_restoration": false,
|
380 |
+
"face_restoration_model": "CodeFormer",
|
381 |
+
"code_former_weight": 0.5,
|
382 |
+
"face_restoration_unload": false,
|
383 |
+
"postprocessing_enable_in_main_ui": [],
|
384 |
+
"postprocessing_disable_in_extras": [],
|
385 |
+
"postprocessing_operation_order": [],
|
386 |
+
"upscaling_max_images_in_cache": 5,
|
387 |
+
"postprocessing_existing_caption_action": "Ignore",
|
388 |
+
"ESRGAN_tile": 192,
|
389 |
+
"ESRGAN_tile_overlap": 8,
|
390 |
+
"realesrgan_enabled_models": [
|
391 |
+
"R-ESRGAN 4x+",
|
392 |
+
"R-ESRGAN 4x+ Anime6B"
|
393 |
+
],
|
394 |
+
"dat_enabled_models": [
|
395 |
+
"DAT x2",
|
396 |
+
"DAT x3",
|
397 |
+
"DAT x4"
|
398 |
+
],
|
399 |
+
"DAT_tile": 192,
|
400 |
+
"DAT_tile_overlap": 8,
|
401 |
+
"set_scale_by_when_changing_upscaler": false,
|
402 |
+
"unload_models_when_training": false,
|
403 |
+
"pin_memory": false,
|
404 |
+
"save_optimizer_state": false,
|
405 |
+
"save_training_settings_to_txt": true,
|
406 |
+
"dataset_filename_word_regex": "",
|
407 |
+
"dataset_filename_join_string": " ",
|
408 |
+
"training_image_repeats_per_epoch": 1,
|
409 |
+
"training_write_csv_every": 500.0,
|
410 |
+
"training_xattention_optimizations": false,
|
411 |
+
"training_enable_tensorboard": false,
|
412 |
+
"training_tensorboard_save_images": false,
|
413 |
+
"training_tensorboard_flush_every": 120.0,
|
414 |
+
"canvas_hotkey_zoom": "Alt",
|
415 |
+
"canvas_hotkey_adjust": "Ctrl",
|
416 |
+
"canvas_hotkey_shrink_brush": "Q",
|
417 |
+
"canvas_hotkey_grow_brush": "W",
|
418 |
+
"canvas_hotkey_move": "F",
|
419 |
+
"canvas_hotkey_fullscreen": "S",
|
420 |
+
"canvas_hotkey_reset": "R",
|
421 |
+
"canvas_hotkey_overlap": "O",
|
422 |
+
"canvas_show_tooltip": true,
|
423 |
+
"canvas_auto_expand": true,
|
424 |
+
"canvas_blur_prompt": false,
|
425 |
+
"canvas_disabled_functions": [
|
426 |
+
"Overlap"
|
427 |
+
],
|
428 |
+
"interrogate_keep_models_in_memory": false,
|
429 |
+
"interrogate_return_ranks": false,
|
430 |
+
"interrogate_clip_num_beams": 1,
|
431 |
+
"interrogate_clip_min_length": 24,
|
432 |
+
"interrogate_clip_max_length": 48,
|
433 |
+
"interrogate_clip_dict_limit": 1500.0,
|
434 |
+
"interrogate_clip_skip_categories": [],
|
435 |
+
"interrogate_deepbooru_score_threshold": 0.5,
|
436 |
+
"deepbooru_sort_alpha": true,
|
437 |
+
"deepbooru_use_spaces": true,
|
438 |
+
"deepbooru_escape": true,
|
439 |
+
"deepbooru_filter_tags": ""
|
440 |
+
}
|
Stable-diffusion/ui/custom_hires_fix.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from os.path import exists
|
3 |
+
|
4 |
+
from tqdm import trange
|
5 |
+
from modules import scripts, shared, processing, sd_samplers, script_callbacks, rng
|
6 |
+
from modules import devices, prompt_parser, sd_models, extra_networks
|
7 |
+
import modules.images as images
|
8 |
+
import k_diffusion
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image, ImageEnhance
|
13 |
+
import torch
|
14 |
+
import importlib
|
15 |
+
|
16 |
+
|
17 |
+
def safe_import(import_name, pkg_name = None):
|
18 |
+
try:
|
19 |
+
__import__(import_name)
|
20 |
+
except Exception:
|
21 |
+
pkg_name = pkg_name or import_name
|
22 |
+
import pip
|
23 |
+
if hasattr(pip, 'main'):
|
24 |
+
pip.main(['install', pkg_name])
|
25 |
+
else:
|
26 |
+
pip._internal.main(['install', pkg_name])
|
27 |
+
__import__(import_name)
|
28 |
+
|
29 |
+
|
30 |
+
safe_import('kornia')
|
31 |
+
safe_import('omegaconf')
|
32 |
+
safe_import('pathlib')
|
33 |
+
from omegaconf import DictConfig, OmegaConf
|
34 |
+
from pathlib import Path
|
35 |
+
import kornia
|
36 |
+
from skimage import exposure
|
37 |
+
|
38 |
+
config_path = Path(__file__).parent.resolve() / '../config.yaml'
|
39 |
+
|
40 |
+
|
41 |
+
class CustomHiresFix(scripts.Script):
|
42 |
+
def __init__(self):
|
43 |
+
super().__init__()
|
44 |
+
if not exists(config_path):
|
45 |
+
open(config_path, 'w').close()
|
46 |
+
self.config: DictConfig = OmegaConf.load(config_path)
|
47 |
+
self.callback_set = False
|
48 |
+
self.orig_clip_skip = None
|
49 |
+
self.orig_cfg = None
|
50 |
+
self.p: processing.StableDiffusionProcessing = None
|
51 |
+
self.pp = None
|
52 |
+
self.sampler = []
|
53 |
+
self.cond = None
|
54 |
+
self.uncond = None
|
55 |
+
self.step = None
|
56 |
+
self.tv = None
|
57 |
+
self.width = None
|
58 |
+
self.height = None
|
59 |
+
self.use_cn = False
|
60 |
+
self.external_code = None
|
61 |
+
self.cn_image = None
|
62 |
+
self.cn_units = []
|
63 |
+
|
64 |
+
def title(self):
|
65 |
+
return "Custom Hires Fix"
|
66 |
+
|
67 |
+
def show(self, is_img2img):
|
68 |
+
return scripts.AlwaysVisible
|
69 |
+
|
70 |
+
def ui(self, is_img2img):
|
71 |
+
with gr.Accordion(label='Custom hires fix', open=False):
|
72 |
+
enable = gr.Checkbox(label='Enable extension', value=self.config.get('enable', False))
|
73 |
+
with gr.Row():
|
74 |
+
width = gr.Slider(minimum=512, maximum=2048, step=8,
|
75 |
+
label="Upscale width to",
|
76 |
+
value=self.config.get('width', 1024), allow_flagging='never', show_progress=False)
|
77 |
+
height = gr.Slider(minimum=512, maximum=2048, step=8,
|
78 |
+
label="Upscale height to",
|
79 |
+
value=self.config.get('height', 0), allow_flagging='never', show_progress=False)
|
80 |
+
steps = gr.Slider(minimum=8, maximum=25, step=1,
|
81 |
+
label="Steps",
|
82 |
+
value=self.config.get('steps', 15))
|
83 |
+
with gr.Row():
|
84 |
+
prompt = gr.Textbox(label='Prompt for upscale (added to generation prompt)',
|
85 |
+
placeholder='Leave empty for using generation prompt',
|
86 |
+
value=self.config.get('prompt', ''))
|
87 |
+
with gr.Row():
|
88 |
+
negative_prompt = gr.Textbox(label='Negative prompt for upscale (replaces generation prompt)',
|
89 |
+
placeholder='Leave empty for using generation negative prompt',
|
90 |
+
value=self.config.get('negative_prompt', ''))
|
91 |
+
with gr.Row():
|
92 |
+
first_upscaler = gr.Dropdown([*[x.name for x in shared.sd_upscalers
|
93 |
+
if x.name not in ['None', 'Nearest', 'LDSR']]],
|
94 |
+
label='First upscaler',
|
95 |
+
value=self.config.get('first_upscaler', 'R-ESRGAN 4x+'))
|
96 |
+
second_upscaler = gr.Dropdown([*[x.name for x in shared.sd_upscalers
|
97 |
+
if x.name not in ['None', 'Nearest', 'LDSR']]],
|
98 |
+
label='Second upscaler',
|
99 |
+
value=self.config.get('second_upscaler', 'R-ESRGAN 4x+'))
|
100 |
+
with gr.Row():
|
101 |
+
first_latent = gr.Slider(minimum=0.0, maximum=1.0, step=0.01,
|
102 |
+
label="Latent upscale ratio (1)",
|
103 |
+
value=self.config.get('first_latent', 0.3))
|
104 |
+
second_latent = gr.Slider(minimum=0.0, maximum=1.0, step=0.01,
|
105 |
+
label="Latent upscale ratio (2)",
|
106 |
+
value=self.config.get('second_latent', 0.1))
|
107 |
+
with gr.Row():
|
108 |
+
filter = gr.Dropdown(['Noise sync (sharp)', 'Morphological (smooth)', 'Combined (balanced)'],
|
109 |
+
label='Filter mode',
|
110 |
+
value=self.config.get('filter', 'Noise sync (sharp)'))
|
111 |
+
strength = gr.Slider(minimum=1.0, maximum=3.5, step=0.1, label="Generation strength",
|
112 |
+
value=self.config.get('strength', 2.0))
|
113 |
+
denoise_offset = gr.Slider(minimum=-0.05, maximum=0.15, step=0.01,
|
114 |
+
label="Denoise offset",
|
115 |
+
value=self.config.get('denoise_offset', 0.05))
|
116 |
+
with gr.Accordion(label='Extra', open=False):
|
117 |
+
with gr.Row():
|
118 |
+
filter_offset = gr.Slider(minimum=-1.0, maximum=1.0, step=0.1,
|
119 |
+
label="Filter offset (higher - smoother)",
|
120 |
+
value=self.config.get('filter_offset', 0.0))
|
121 |
+
clip_skip = gr.Slider(minimum=0, maximum=5, step=1,
|
122 |
+
label="Clip skip for upscale (0 - not change)",
|
123 |
+
value=self.config.get('clip_skip', 0))
|
124 |
+
with gr.Row():
|
125 |
+
start_control_at = gr.Slider(minimum=0.0, maximum=0.7, step=0.01,
|
126 |
+
label="CN start for enabled units",
|
127 |
+
value=self.config.get('start_control_at', 0.0))
|
128 |
+
cn_ref = gr.Checkbox(label='Use last image for reference', value=self.config.get('cn_ref', False))
|
129 |
+
with gr.Row():
|
130 |
+
sampler = gr.Dropdown(['Restart', 'DPM++ 2M', 'DPM++ 2M Karras', 'DPM++ 2M SDE', 'DPM++ 2M SDE Karras', 'DPM++ 2M SDE Heun', 'DPM++ 2M SDE Heun Karras', 'DPM++ 3M SDE', 'DPM++ 3M SDE Karras', 'Restart + DPM++ 3M SDE'],
|
131 |
+
label='Sampler',
|
132 |
+
value=self.config.get('sampler', 'DPM++ 2M Karras'))
|
133 |
+
|
134 |
+
if is_img2img:
|
135 |
+
width.change(fn=lambda x: gr.update(value=0), inputs=width, outputs=height)
|
136 |
+
height.change(fn=lambda x: gr.update(value=0), inputs=height, outputs=width)
|
137 |
+
else:
|
138 |
+
width.change(fn=lambda x: gr.update(value=0), inputs=width, outputs=height)
|
139 |
+
height.change(fn=lambda x: gr.update(value=0), inputs=height, outputs=width)
|
140 |
+
|
141 |
+
ui = [enable, width, height, steps, first_upscaler, second_upscaler, first_latent, second_latent, prompt,
|
142 |
+
negative_prompt, strength, filter, filter_offset, denoise_offset, clip_skip, sampler, cn_ref, start_control_at]
|
143 |
+
for elem in ui:
|
144 |
+
setattr(elem, "do_not_save_to_config", True)
|
145 |
+
return ui
|
146 |
+
|
147 |
+
def process(self, p, *args, **kwargs):
|
148 |
+
self.p = p
|
149 |
+
self.cn_units = []
|
150 |
+
try:
|
151 |
+
self.external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
|
152 |
+
cn_units = self.external_code.get_all_units_in_processing(p)
|
153 |
+
for unit in cn_units:
|
154 |
+
self.cn_units += [unit]
|
155 |
+
self.use_cn = len(self.cn_units) > 0
|
156 |
+
except ImportError:
|
157 |
+
self.use_cn = False
|
158 |
+
|
159 |
+
def postprocess_image(self, p, pp: scripts.PostprocessImageArgs,
|
160 |
+
enable, width, height, steps, first_upscaler, second_upscaler, first_latent, second_latent, prompt,
|
161 |
+
negative_prompt, strength, filter, filter_offset, denoise_offset, clip_skip, sampler, cn_ref, start_control_at
|
162 |
+
):
|
163 |
+
if not enable:
|
164 |
+
return
|
165 |
+
self.step = 0
|
166 |
+
self.pp = pp
|
167 |
+
self.config.width = width
|
168 |
+
self.config.height = height
|
169 |
+
self.config.prompt = prompt.strip()
|
170 |
+
self.config.negative_prompt = negative_prompt.strip()
|
171 |
+
self.config.steps = steps
|
172 |
+
self.config.first_upscaler = first_upscaler
|
173 |
+
self.config.second_upscaler = second_upscaler
|
174 |
+
self.config.first_latent = first_latent
|
175 |
+
self.config.second_latent = second_latent
|
176 |
+
self.config.strength = strength
|
177 |
+
self.config.filter = filter
|
178 |
+
self.config.filter_offset = filter_offset
|
179 |
+
self.config.denoise_offset = denoise_offset
|
180 |
+
self.config.clip_skip = clip_skip
|
181 |
+
self.config.sampler = sampler
|
182 |
+
self.config.cn_ref = cn_ref
|
183 |
+
self.config.start_control_at = start_control_at
|
184 |
+
self.orig_clip_skip = shared.opts.CLIP_stop_at_last_layers
|
185 |
+
self.orig_cfg = p.cfg_scale
|
186 |
+
|
187 |
+
if clip_skip > 0:
|
188 |
+
shared.opts.CLIP_stop_at_last_layers = clip_skip
|
189 |
+
if 'Restart' in self.config.sampler:
|
190 |
+
self.sampler = sd_samplers.create_sampler('Restart', p.sd_model)
|
191 |
+
else:
|
192 |
+
self.sampler = sd_samplers.create_sampler(sampler, p.sd_model)
|
193 |
+
|
194 |
+
def denoise_callback(params: script_callbacks.CFGDenoiserParams):
|
195 |
+
if params.sampling_step > 0:
|
196 |
+
p.cfg_scale = self.orig_cfg
|
197 |
+
if self.step == 1 and self.config.strength != 1.0:
|
198 |
+
params.sigma[-1] = params.sigma[0] * (1 - (1 - self.config.strength) / 100)
|
199 |
+
elif self.step == 2 and self.config.filter == 'Noise sync (sharp)':
|
200 |
+
params.sigma[-1] = params.sigma[0] * (1 - (self.tv - 1 + self.config.filter_offset - (self.config.denoise_offset * 5)) / 50)
|
201 |
+
elif self.step == 2 and self.config.filter == 'Combined (balanced)':
|
202 |
+
params.sigma[-1] = params.sigma[0] * (1 - (self.tv - 1 + self.config.filter_offset - (self.config.denoise_offset * 5)) / 100)
|
203 |
+
|
204 |
+
if self.callback_set is False:
|
205 |
+
script_callbacks.on_cfg_denoiser(denoise_callback)
|
206 |
+
self.callback_set = True
|
207 |
+
|
208 |
+
_, loras_act = extra_networks.parse_prompt(prompt)
|
209 |
+
extra_networks.activate(p, loras_act)
|
210 |
+
_, loras_deact = extra_networks.parse_prompt(negative_prompt)
|
211 |
+
extra_networks.deactivate(p, loras_deact)
|
212 |
+
|
213 |
+
self.cn_image = pp.image
|
214 |
+
|
215 |
+
with devices.autocast():
|
216 |
+
shared.state.nextjob()
|
217 |
+
x = self.gen(pp.image)
|
218 |
+
shared.state.nextjob()
|
219 |
+
x = self.filter(x)
|
220 |
+
shared.opts.CLIP_stop_at_last_layers = self.orig_clip_skip
|
221 |
+
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
|
222 |
+
pp.image = x
|
223 |
+
extra_networks.deactivate(p, loras_act)
|
224 |
+
OmegaConf.save(self.config, config_path)
|
225 |
+
|
226 |
+
def enable_cn(self, image: np.ndarray):
|
227 |
+
for unit in self.cn_units:
|
228 |
+
if unit.model != 'None':
|
229 |
+
unit.guidance_start = self.config.start_control_at if unit.enabled else unit.guidance_start
|
230 |
+
unit.processor_res = min(image.shape[0], image.shape[0])
|
231 |
+
unit.enabled = True
|
232 |
+
if unit.image is None:
|
233 |
+
unit.image = image
|
234 |
+
self.p.width = image.shape[1]
|
235 |
+
self.p.height = image.shape[0]
|
236 |
+
self.external_code.update_cn_script_in_processing(self.p, self.cn_units)
|
237 |
+
for script in self.p.scripts.alwayson_scripts:
|
238 |
+
if script.title().lower() == 'controlnet':
|
239 |
+
script.controlnet_hack(self.p)
|
240 |
+
|
241 |
+
def process_prompt(self):
|
242 |
+
prompt = self.p.prompt.strip().split('AND', 1)[0]
|
243 |
+
if self.config.prompt != '':
|
244 |
+
prompt = f'{prompt} {self.config.prompt}'
|
245 |
+
|
246 |
+
if self.config.negative_prompt != '':
|
247 |
+
negative_prompt = self.config.negative_prompt
|
248 |
+
else:
|
249 |
+
negative_prompt = self.p.negative_prompt.strip()
|
250 |
+
|
251 |
+
with devices.autocast():
|
252 |
+
if self.width is not None and self.height is not None and hasattr(prompt_parser, 'SdConditioning'):
|
253 |
+
c = prompt_parser.SdConditioning([prompt], False, self.width, self.height)
|
254 |
+
uc = prompt_parser.SdConditioning([negative_prompt], False, self.width, self.height)
|
255 |
+
else:
|
256 |
+
c = [prompt]
|
257 |
+
uc = [negative_prompt]
|
258 |
+
self.cond = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, c, self.config.steps)
|
259 |
+
self.uncond = prompt_parser.get_learned_conditioning(shared.sd_model, uc, self.config.steps)
|
260 |
+
|
261 |
+
def gen(self, x):
|
262 |
+
self.step = 1
|
263 |
+
ratio = x.width / x.height
|
264 |
+
self.width = self.config.width if self.config.width > 0 else int(self.config.height * ratio)
|
265 |
+
self.height = self.config.height if self.config.height > 0 else int(self.config.width / ratio)
|
266 |
+
self.width = int((self.width - x.width) // 2 + x.width)
|
267 |
+
self.height = int((self.height - x.height) // 2 + x.height)
|
268 |
+
sd_models.apply_token_merging(self.p.sd_model, self.p.get_token_merging_ratio(for_hr=True) / 2)
|
269 |
+
|
270 |
+
if self.use_cn:
|
271 |
+
self.enable_cn(np.array(self.cn_image.resize((self.width, self.height))))
|
272 |
+
|
273 |
+
with devices.autocast(), torch.inference_mode():
|
274 |
+
self.process_prompt()
|
275 |
+
|
276 |
+
x_big = None
|
277 |
+
if self.config.first_latent > 0:
|
278 |
+
image = np.array(x).astype(np.float32) / 255.0
|
279 |
+
image = np.moveaxis(image, 2, 0)
|
280 |
+
decoded_sample = torch.from_numpy(image)
|
281 |
+
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
|
282 |
+
decoded_sample = 2.0 * decoded_sample - 1.0
|
283 |
+
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
|
284 |
+
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
|
285 |
+
x_big = torch.nn.functional.interpolate(sample, (self.height // 8, self.width // 8), mode='nearest')
|
286 |
+
|
287 |
+
if self.config.first_latent < 1:
|
288 |
+
x = images.resize_image(0, x, self.width, self.height,
|
289 |
+
upscaler_name=self.config.first_upscaler)
|
290 |
+
image = np.array(x).astype(np.float32) / 255.0
|
291 |
+
image = np.moveaxis(image, 2, 0)
|
292 |
+
decoded_sample = torch.from_numpy(image)
|
293 |
+
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
|
294 |
+
decoded_sample = 2.0 * decoded_sample - 1.0
|
295 |
+
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
|
296 |
+
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
|
297 |
+
else:
|
298 |
+
sample = x_big
|
299 |
+
if x_big is not None and self.config.first_latent != 1:
|
300 |
+
sample = (sample * (1 - self.config.first_latent)) + (x_big * self.config.first_latent)
|
301 |
+
image_conditioning = self.p.img2img_image_conditioning(decoded_sample, sample)
|
302 |
+
|
303 |
+
noise = torch.zeros_like(sample)
|
304 |
+
noise = kornia.augmentation.RandomGaussianNoise(mean=0.0, std=1.0, p=1.0)(noise)
|
305 |
+
steps = int(max(((self.p.steps - self.config.steps) / 2) + self.config.steps, self.config.steps))
|
306 |
+
self.p.denoising_strength = 0.45 + self.config.denoise_offset * 0.2
|
307 |
+
self.p.cfg_scale = self.orig_cfg + 0
|
308 |
+
|
309 |
+
def denoiser_override(n):
|
310 |
+
sigmas = k_diffusion.sampling.get_sigmas_polyexponential(n, 0.01, 15, 0.5, devices.device)
|
311 |
+
return sigmas
|
312 |
+
|
313 |
+
self.p.rng = rng.ImageRNG(sample.shape[1:], self.p.seeds, subseeds=self.p.subseeds,
|
314 |
+
subseed_strength=self.p.subseed_strength,
|
315 |
+
seed_resize_from_h=self.p.seed_resize_from_h, seed_resize_from_w=self.p.seed_resize_from_w)
|
316 |
+
|
317 |
+
self.p.sampler_noise_scheduler_override = denoiser_override
|
318 |
+
self.p.batch_size = 1
|
319 |
+
sample = self.sampler.sample_img2img(self.p, sample.to(devices.dtype), noise, self.cond, self.uncond,
|
320 |
+
steps=steps, image_conditioning=image_conditioning).to(devices.dtype_vae)
|
321 |
+
b, c, w, h = sample.size()
|
322 |
+
self.tv = kornia.losses.TotalVariation()(sample).mean() / (w * h)
|
323 |
+
devices.torch_gc()
|
324 |
+
decoded_sample = processing.decode_first_stage(shared.sd_model, sample)
|
325 |
+
if math.isnan(decoded_sample.min()):
|
326 |
+
devices.torch_gc()
|
327 |
+
sample = torch.clamp(sample, -3, 3)
|
328 |
+
decoded_sample = processing.decode_first_stage(shared.sd_model, sample)
|
329 |
+
decoded_sample = torch.clamp((decoded_sample + 1.0) / 2.0, min=0.0, max=1.0).squeeze()
|
330 |
+
x_sample = 255. * np.moveaxis(decoded_sample.cpu().numpy(), 0, 2)
|
331 |
+
x_sample = x_sample.astype(np.uint8)
|
332 |
+
image = Image.fromarray(x_sample)
|
333 |
+
return image
|
334 |
+
|
335 |
+
def filter(self, x):
|
336 |
+
if 'Restart' == self.config.sampler:
|
337 |
+
self.sampler = sd_samplers.create_sampler('Restart', shared.sd_model)
|
338 |
+
elif 'Restart + DPM++ 3M SDE' == self.config.sampler:
|
339 |
+
self.sampler = sd_samplers.create_sampler('DPM++ 3M SDE', shared.sd_model)
|
340 |
+
self.step = 2
|
341 |
+
ratio = x.width / x.height
|
342 |
+
self.width = self.config.width if self.config.width > 0 else int(self.config.height * ratio)
|
343 |
+
self.height = self.config.height if self.config.height > 0 else int(self.config.width / ratio)
|
344 |
+
sd_models.apply_token_merging(self.p.sd_model, self.p.get_token_merging_ratio(for_hr=True))
|
345 |
+
|
346 |
+
if self.use_cn:
|
347 |
+
self.cn_image = x if self.config.cn_ref else self.cn_image
|
348 |
+
self.enable_cn(np.array(self.cn_image.resize((self.width, self.height))))
|
349 |
+
|
350 |
+
with devices.autocast(), torch.inference_mode():
|
351 |
+
self.process_prompt()
|
352 |
+
|
353 |
+
x_big = None
|
354 |
+
if self.config.second_latent > 0:
|
355 |
+
image = np.array(x).astype(np.float32) / 255.0
|
356 |
+
image = np.moveaxis(image, 2, 0)
|
357 |
+
decoded_sample = torch.from_numpy(image)
|
358 |
+
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
|
359 |
+
decoded_sample = 2.0 * decoded_sample - 1.0
|
360 |
+
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
|
361 |
+
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
|
362 |
+
x_big = torch.nn.functional.interpolate(sample, (self.height // 8, self.width // 8), mode='nearest')
|
363 |
+
|
364 |
+
if self.config.second_latent < 1:
|
365 |
+
x = images.resize_image(0, x, self.width, self.height, upscaler_name=self.config.second_upscaler)
|
366 |
+
image = np.array(x).astype(np.float32) / 255.0
|
367 |
+
image = np.moveaxis(image, 2, 0)
|
368 |
+
decoded_sample = torch.from_numpy(image)
|
369 |
+
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
|
370 |
+
decoded_sample = 2.0 * decoded_sample - 1.0
|
371 |
+
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
|
372 |
+
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
|
373 |
+
else:
|
374 |
+
sample = x_big
|
375 |
+
if x_big is not None and self.config.second_latent != 1:
|
376 |
+
sample = (sample * (1 - self.config.second_latent)) + (x_big * self.config.second_latent)
|
377 |
+
image_conditioning = self.p.img2img_image_conditioning(decoded_sample, sample)
|
378 |
+
|
379 |
+
noise = torch.zeros_like(sample)
|
380 |
+
noise = kornia.augmentation.RandomGaussianNoise(mean=0.0, std=1.0, p=1.0)(noise)
|
381 |
+
self.p.denoising_strength = 0.45 + self.config.denoise_offset
|
382 |
+
self.p.cfg_scale = self.orig_cfg + 3
|
383 |
+
|
384 |
+
if self.config.filter == 'Morphological (smooth)':
|
385 |
+
noise_mask = kornia.morphology.gradient(sample, torch.ones(5, 5).to(devices.device))
|
386 |
+
noise_mask = kornia.filters.median_blur(noise_mask, (3, 3))
|
387 |
+
noise_mask = (0.1 + noise_mask / noise_mask.max()) * (max(
|
388 |
+
(1.75 - (self.tv - 1) * 4), 1.75) - self.config.filter_offset)
|
389 |
+
noise = noise * noise_mask
|
390 |
+
elif self.config.filter == 'Combined (balanced)':
|
391 |
+
noise_mask = kornia.morphology.gradient(sample, torch.ones(5, 5).to(devices.device))
|
392 |
+
noise_mask = kornia.filters.median_blur(noise_mask, (3, 3))
|
393 |
+
noise_mask = (0.1 + noise_mask / noise_mask.max()) * (max(
|
394 |
+
(1.75 - (self.tv - 1) / 2), 1.75) - self.config.filter_offset)
|
395 |
+
noise = noise * noise_mask
|
396 |
+
|
397 |
+
def denoiser_override(n):
|
398 |
+
return k_diffusion.sampling.get_sigmas_polyexponential(n, 0.01, 7, 0.5, devices.device)
|
399 |
+
|
400 |
+
self.p.sampler_noise_scheduler_override = denoiser_override
|
401 |
+
self.p.batch_size = 1
|
402 |
+
samples = self.sampler.sample_img2img(self.p, sample.to(devices.dtype), noise, self.cond, self.uncond,
|
403 |
+
steps=self.config.steps, image_conditioning=image_conditioning
|
404 |
+
).to(devices.dtype_vae)
|
405 |
+
devices.torch_gc()
|
406 |
+
self.p.iteration += 1
|
407 |
+
decoded_sample = processing.decode_first_stage(shared.sd_model, samples)
|
408 |
+
if math.isnan(decoded_sample.min()):
|
409 |
+
devices.torch_gc()
|
410 |
+
samples = torch.clamp(samples, -3, 3)
|
411 |
+
decoded_sample = processing.decode_first_stage(shared.sd_model, samples)
|
412 |
+
decoded_sample = torch.clamp((decoded_sample + 1.0) / 2.0, min=0.0, max=1.0).squeeze()
|
413 |
+
x_sample = 255. * np.moveaxis(decoded_sample.cpu().numpy(), 0, 2)
|
414 |
+
x_sample = x_sample.astype(np.uint8)
|
415 |
+
image = Image.fromarray(x_sample)
|
416 |
+
return image
|
Stable-diffusion/ui/embeddings.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:793d2c9d60623bb3e7ff229d17777d95cef08c73c98d23ea3565de0de8519208
|
3 |
+
size 5621788
|
Stable-diffusion/ui/encrypt_image.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
from pathlib import Path
|
4 |
+
from modules import shared,script_callbacks,scripts as md_scripts,images
|
5 |
+
from modules.api import api
|
6 |
+
from modules.shared import opts
|
7 |
+
from scripts.core.core import get_sha256,dencrypt_image,dencrypt_image_v2,encrypt_image_v2
|
8 |
+
from PIL import PngImagePlugin,_util,ImagePalette
|
9 |
+
from PIL import Image as PILImage
|
10 |
+
from io import BytesIO
|
11 |
+
from typing import Optional
|
12 |
+
from fastapi import FastAPI
|
13 |
+
from gradio import Blocks
|
14 |
+
from fastapi import FastAPI, Request, Response
|
15 |
+
import sys
|
16 |
+
from urllib.parse import unquote
|
17 |
+
from colorama import Fore, Back, Style
|
18 |
+
|
19 |
+
repo_dir = md_scripts.basedir()
|
20 |
+
password = getattr(shared.cmd_opts, 'encrypt_pass', None)
|
21 |
+
|
22 |
+
|
23 |
+
def hook_http_request(app: FastAPI):
|
24 |
+
@app.middleware("http")
|
25 |
+
async def image_dencrypt(req: Request, call_next):
|
26 |
+
endpoint:str = req.scope.get('path', 'err')
|
27 |
+
endpoint='/'+endpoint.strip('/')
|
28 |
+
# 兼容无边浏览器
|
29 |
+
if endpoint.startswith('/infinite_image_browsing/image-thumbnail') or endpoint.startswith('/infinite_image_browsing/file'):
|
30 |
+
query_string:str = req.scope.get('query_string').decode('utf-8')
|
31 |
+
query_string = unquote(query_string)
|
32 |
+
if query_string and query_string.index('path=')>=0:
|
33 |
+
query = query_string.split('&')
|
34 |
+
path = ''
|
35 |
+
for sub in query:
|
36 |
+
if sub.startswith('path='):
|
37 |
+
path = sub[sub.index('=')+1:]
|
38 |
+
if path:
|
39 |
+
endpoint = '/file=' + path
|
40 |
+
# 模型预览图
|
41 |
+
if endpoint.startswith('/sd_extra_networks/thumb'):
|
42 |
+
query_string:str = req.scope.get('query_string').decode('utf-8')
|
43 |
+
query_string = unquote(query_string)
|
44 |
+
if query_string and query_string.index('filename=')>=0:
|
45 |
+
query = query_string.split('&')
|
46 |
+
path = ''
|
47 |
+
for sub in query:
|
48 |
+
if sub.startswith('filename='):
|
49 |
+
path = sub[sub.index('=')+1:]
|
50 |
+
if path:
|
51 |
+
endpoint = '/file=' + path
|
52 |
+
if endpoint.startswith('/file='):
|
53 |
+
file_path = endpoint[6:] or ''
|
54 |
+
if not file_path: return await call_next(req)
|
55 |
+
if file_path.rfind('.') == -1: return await call_next(req)
|
56 |
+
if not file_path[file_path.rfind('.'):]: return await call_next(req)
|
57 |
+
if file_path[file_path.rfind('.'):].lower() in ['.png','.jpg','.jpeg','.webp','.abcd']:
|
58 |
+
image = PILImage.open(file_path)
|
59 |
+
pnginfo = image.info or {}
|
60 |
+
if 'Encrypt' in pnginfo:
|
61 |
+
buffered = BytesIO()
|
62 |
+
info = PngImagePlugin.PngInfo()
|
63 |
+
for key in pnginfo.keys():
|
64 |
+
if pnginfo[key]:
|
65 |
+
info.add_text(key,pnginfo[key])
|
66 |
+
image.save(buffered, format=PngImagePlugin.PngImageFile.format, pnginfo=info)
|
67 |
+
decrypted_image_data = buffered.getvalue()
|
68 |
+
response: Response = Response(content=decrypted_image_data, media_type="image/png")
|
69 |
+
return response
|
70 |
+
|
71 |
+
return await call_next(req)
|
72 |
+
|
73 |
+
def set_shared_options():
|
74 |
+
# 传递插件状态到前端
|
75 |
+
section = ("encrypt_image_is_enable",'图片加密' if shared.opts.localization == 'zh_CN' else "encrypt image" )
|
76 |
+
option = shared.OptionInfo(
|
77 |
+
default="是",
|
78 |
+
label='是否启用了加密插件' if shared.opts.localization == 'zh_CN' else "Whether the encryption plug-in is enabled",
|
79 |
+
section=section,
|
80 |
+
)
|
81 |
+
option.do_not_save = True
|
82 |
+
shared.opts.add_option(
|
83 |
+
"encrypt_image_is_enable",
|
84 |
+
option,
|
85 |
+
)
|
86 |
+
shared.opts.data['encrypt_image_is_enable'] = "是"
|
87 |
+
|
88 |
+
def app_started_callback(_: Blocks, app: FastAPI):
|
89 |
+
set_shared_options()
|
90 |
+
|
91 |
+
|
92 |
+
if PILImage.Image.__name__ != 'EncryptedImage':
|
93 |
+
super_open = PILImage.open
|
94 |
+
super_encode_pil_to_base64 = api.encode_pil_to_base64
|
95 |
+
super_modules_images_save_image = images.save_image
|
96 |
+
super_api_middleware = api.api_middleware
|
97 |
+
class EncryptedImage(PILImage.Image):
|
98 |
+
__name__ = "EncryptedImage"
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def from_image(image:PILImage.Image):
|
102 |
+
image = image.copy()
|
103 |
+
img = EncryptedImage()
|
104 |
+
img.im = image.im
|
105 |
+
img._mode = image.mode
|
106 |
+
if image.im.mode:
|
107 |
+
try:
|
108 |
+
img.mode = image.im.mode
|
109 |
+
except Exception as e:
|
110 |
+
''
|
111 |
+
img._size = image.size
|
112 |
+
img.format = image.format
|
113 |
+
if image.mode in ("P", "PA"):
|
114 |
+
if image.palette:
|
115 |
+
img.palette = image.palette.copy()
|
116 |
+
else:
|
117 |
+
img.palette = ImagePalette.ImagePalette()
|
118 |
+
img.info = image.info.copy()
|
119 |
+
return img
|
120 |
+
|
121 |
+
def save(self, fp, format=None, **params):
|
122 |
+
filename = ""
|
123 |
+
if isinstance(fp, Path):
|
124 |
+
filename = str(fp)
|
125 |
+
elif _util.is_path(fp):
|
126 |
+
filename = fp
|
127 |
+
elif fp == sys.stdout:
|
128 |
+
try:
|
129 |
+
fp = sys.stdout.buffer
|
130 |
+
except AttributeError:
|
131 |
+
pass
|
132 |
+
if not filename and hasattr(fp, "name") and _util.is_path(fp.name):
|
133 |
+
# only set the name for metadata purposes
|
134 |
+
filename = fp.name
|
135 |
+
|
136 |
+
if not filename or not password:
|
137 |
+
# 如果没有密码或不保存到硬盘,直接保存
|
138 |
+
super().save(fp, format = format, **params)
|
139 |
+
return
|
140 |
+
|
141 |
+
if 'Encrypt' in self.info and (self.info['Encrypt'] == 'pixel_shuffle' or self.info['Encrypt'] == 'pixel_shuffle_2'):
|
142 |
+
super().save(fp, format = format, **params)
|
143 |
+
return
|
144 |
+
|
145 |
+
encrypt_image_v2(self, get_sha256(password))
|
146 |
+
self.format = PngImagePlugin.PngImageFile.format
|
147 |
+
pnginfo = params.get('pnginfo', PngImagePlugin.PngInfo())
|
148 |
+
if not pnginfo:
|
149 |
+
pnginfo = PngImagePlugin.PngInfo()
|
150 |
+
pnginfo.add_text('Encrypt', 'pixel_shuffle_2')
|
151 |
+
pnginfo.add_text('EncryptPwdSha', get_sha256(f'{get_sha256(password)}Encrypt'))
|
152 |
+
for key in (self.info or {}).keys():
|
153 |
+
if self.info[key]:
|
154 |
+
pnginfo.add_text(key,str(self.info[key]))
|
155 |
+
params.update(pnginfo=pnginfo)
|
156 |
+
super().save(fp, format=self.format, **params)
|
157 |
+
# 保存到文件后解密内存内的图片,让直接在内存内使用时图片正常
|
158 |
+
dencrypt_image_v2(self, get_sha256(password))
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
def open(fp,*args, **kwargs):
|
163 |
+
image = super_open(fp,*args, **kwargs)
|
164 |
+
if password and image.format.lower() == PngImagePlugin.PngImageFile.format.lower():
|
165 |
+
pnginfo = image.info or {}
|
166 |
+
if 'Encrypt' in pnginfo and pnginfo["Encrypt"] == 'pixel_shuffle':
|
167 |
+
dencrypt_image(image, get_sha256(password))
|
168 |
+
pnginfo["Encrypt"] = None
|
169 |
+
image = EncryptedImage.from_image(image=image)
|
170 |
+
return image
|
171 |
+
if 'Encrypt' in pnginfo and pnginfo["Encrypt"] == 'pixel_shuffle_2':
|
172 |
+
dencrypt_image_v2(image, get_sha256(password))
|
173 |
+
pnginfo["Encrypt"] = None
|
174 |
+
image = EncryptedImage.from_image(image=image)
|
175 |
+
return image
|
176 |
+
return EncryptedImage.from_image(image=image)
|
177 |
+
|
178 |
+
def encode_pil_to_base64(image:PILImage.Image):
|
179 |
+
with io.BytesIO() as output_bytes:
|
180 |
+
image.save(output_bytes, format="PNG", quality=opts.jpeg_quality)
|
181 |
+
pnginfo = image.info or {}
|
182 |
+
if 'Encrypt' in pnginfo and pnginfo["Encrypt"] == 'pixel_shuffle':
|
183 |
+
dencrypt_image(image, get_sha256(password))
|
184 |
+
pnginfo["Encrypt"] = None
|
185 |
+
if 'Encrypt' in pnginfo and pnginfo["Encrypt"] == 'pixel_shuffle_2':
|
186 |
+
dencrypt_image_v2(image, get_sha256(password))
|
187 |
+
pnginfo["Encrypt"] = None
|
188 |
+
bytes_data = output_bytes.getvalue()
|
189 |
+
return base64.b64encode(bytes_data)
|
190 |
+
|
191 |
+
def api_middleware(app: FastAPI):
|
192 |
+
super_api_middleware(app)
|
193 |
+
hook_http_request(app)
|
194 |
+
|
195 |
+
if password:
|
196 |
+
PILImage.Image = EncryptedImage
|
197 |
+
PILImage.open = open
|
198 |
+
api.encode_pil_to_base64 = encode_pil_to_base64
|
199 |
+
api.api_middleware = api_middleware
|
200 |
+
|
201 |
+
if password:
|
202 |
+
script_callbacks.on_app_started(app_started_callback)
|
203 |
+
print(f'{Fore.GREEN}[-] Image Encryption started.{Style.RESET_ALL}')
|
204 |
+
|
205 |
+
else:
|
206 |
+
print(f'{Fore.RED}[-] Image Encryption DISABLED.{Style.RESET_ALL}')
|
Stable-diffusion/ui/encrypt_images_info.js
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lsLoad = false;
|
2 |
+
onUiUpdate(function () {
|
3 |
+
if (lsLoad) return;
|
4 |
+
if (!opts) return;
|
5 |
+
if (!opts["encrypt_image_is_enable"]) return;
|
6 |
+
lsLoad = true;
|
7 |
+
let enable = opts["encrypt_image_is_enable"] == "是";
|
8 |
+
|
9 |
+
function renderInfo(txtOrImg2img, isEnable) {
|
10 |
+
let info = document.getElementById("encrypt_image_" + txtOrImg2img + "2img_info");
|
11 |
+
let top = document.getElementById(txtOrImg2img + "2img_neg_prompt");
|
12 |
+
if (!top) return;
|
13 |
+
|
14 |
+
if (!info) {
|
15 |
+
let parent = top.parentNode;
|
16 |
+
info = document.createElement("div");
|
17 |
+
info.style.minWidth = "100%";
|
18 |
+
info.style.textAlign = "center";
|
19 |
+
info.style.opacity = 0.5;
|
20 |
+
info.style.fontSize = ".89em";
|
21 |
+
info.id = "encrypt_image_" + txtOrImg2img + "2img_info";
|
22 |
+
parent.insertBefore(info, top.nextSibling);
|
23 |
+
}
|
24 |
+
}
|
25 |
+
renderInfo("txt", enable);
|
26 |
+
renderInfo("img", enable);
|
27 |
+
});
|
Stable-diffusion/ui/hashes.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os.path
|
3 |
+
|
4 |
+
from modules import shared
|
5 |
+
import modules.cache
|
6 |
+
|
7 |
+
dump_cache = modules.cache.dump_cache
|
8 |
+
cache = modules.cache.cache
|
9 |
+
|
10 |
+
|
11 |
+
def calculate_sha256(filename):
|
12 |
+
hash_sha256 = hashlib.sha256()
|
13 |
+
blksize = 1024 * 1024
|
14 |
+
|
15 |
+
with open(filename, "rb") as f:
|
16 |
+
for chunk in iter(lambda: f.read(blksize), b""):
|
17 |
+
hash_sha256.update(chunk)
|
18 |
+
|
19 |
+
return hash_sha256.hexdigest()
|
20 |
+
|
21 |
+
|
22 |
+
def sha256_from_cache(filename, title, use_addnet_hash=False):
|
23 |
+
hashes = cache("hashes-addnet") if use_addnet_hash else cache("hashes")
|
24 |
+
try:
|
25 |
+
ondisk_mtime = os.path.getmtime(filename)
|
26 |
+
except FileNotFoundError:
|
27 |
+
return None
|
28 |
+
|
29 |
+
if title not in hashes:
|
30 |
+
return None
|
31 |
+
|
32 |
+
cached_sha256 = hashes[title].get("sha256", None)
|
33 |
+
cached_mtime = hashes[title].get("mtime", 0)
|
34 |
+
|
35 |
+
if ondisk_mtime > cached_mtime or cached_sha256 is None:
|
36 |
+
return None
|
37 |
+
|
38 |
+
return cached_sha256
|
39 |
+
|
40 |
+
|
41 |
+
def sha256(filename, title, use_addnet_hash=False):
|
42 |
+
hashes = cache("hashes-addnet") if use_addnet_hash else cache("hashes")
|
43 |
+
|
44 |
+
sha256_value = sha256_from_cache(filename, title, use_addnet_hash)
|
45 |
+
if sha256_value is not None:
|
46 |
+
return sha256_value
|
47 |
+
|
48 |
+
if shared.cmd_opts.no_hashing:
|
49 |
+
return None
|
50 |
+
|
51 |
+
if use_addnet_hash:
|
52 |
+
with open(filename, "rb") as file:
|
53 |
+
sha256_value = addnet_hash_safetensors(file)
|
54 |
+
else:
|
55 |
+
sha256_value = calculate_sha256(filename)
|
56 |
+
|
57 |
+
hashes[title] = {
|
58 |
+
"mtime": os.path.getmtime(filename),
|
59 |
+
"sha256": sha256_value,
|
60 |
+
}
|
61 |
+
|
62 |
+
dump_cache()
|
63 |
+
|
64 |
+
return sha256_value
|
65 |
+
|
66 |
+
|
67 |
+
def addnet_hash_safetensors(b):
|
68 |
+
"""kohya-ss hash for safetensors from https://github.com/kohya-ss/sd-scripts/blob/main/library/train_util.py"""
|
69 |
+
hash_sha256 = hashlib.sha256()
|
70 |
+
blksize = 1024 * 1024
|
71 |
+
|
72 |
+
b.seek(0)
|
73 |
+
header = b.read(8)
|
74 |
+
n = int.from_bytes(header, "little")
|
75 |
+
|
76 |
+
offset = n + 8
|
77 |
+
b.seek(offset)
|
78 |
+
for chunk in iter(lambda: b.read(blksize), b""):
|
79 |
+
hash_sha256.update(chunk)
|
80 |
+
|
81 |
+
return hash_sha256.hexdigest()
|
Stable-diffusion/ui/lora_block_weight.py
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import gc
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
import torch
|
8 |
+
import shutil
|
9 |
+
import math
|
10 |
+
import importlib
|
11 |
+
import numpy as np
|
12 |
+
import gradio as gr
|
13 |
+
import os.path
|
14 |
+
import random
|
15 |
+
from pprint import pprint
|
16 |
+
import modules.ui
|
17 |
+
import modules.scripts as scripts
|
18 |
+
from PIL import Image, ImageFont, ImageDraw
|
19 |
+
import modules.shared as shared
|
20 |
+
from modules import devices, sd_models, images,cmd_args, extra_networks, sd_hijack
|
21 |
+
from modules.shared import cmd_opts, opts, state
|
22 |
+
from modules.processing import process_images, Processed
|
23 |
+
from modules.script_callbacks import CFGDenoiserParams, on_cfg_denoiser
|
24 |
+
|
25 |
+
LBW_T = "customscript/lora_block_weight.py/txt2img/Active/value"
|
26 |
+
LBW_I = "customscript/lora_block_weight.py/img2img/Active/value"
|
27 |
+
|
28 |
+
if os.path.exists(cmd_opts.ui_config_file):
|
29 |
+
with open(cmd_opts.ui_config_file, 'r', encoding="utf-8") as json_file:
|
30 |
+
ui_config = json.load(json_file)
|
31 |
+
else:
|
32 |
+
print("ui config file not found, using default values")
|
33 |
+
ui_config = {}
|
34 |
+
|
35 |
+
startup_t = ui_config[LBW_T] if LBW_T in ui_config else None
|
36 |
+
startup_i = ui_config[LBW_I] if LBW_I in ui_config else None
|
37 |
+
active_t = "Active" if startup_t else "Not Active"
|
38 |
+
active_i = "Active" if startup_i else "Not Active"
|
39 |
+
|
40 |
+
lxyz = ""
|
41 |
+
lzyx = ""
|
42 |
+
prompts = ""
|
43 |
+
xyelem = ""
|
44 |
+
princ = False
|
45 |
+
|
46 |
+
try:
|
47 |
+
from ldm_patched.modules import model_management
|
48 |
+
forge = True
|
49 |
+
except:
|
50 |
+
forge = False
|
51 |
+
|
52 |
+
BLOCKID26=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
|
53 |
+
BLOCKID17=["BASE","IN01","IN02","IN04","IN05","IN07","IN08","M00","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
|
54 |
+
BLOCKID12=["BASE","IN04","IN05","IN07","IN08","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05"]
|
55 |
+
BLOCKID20=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08"]
|
56 |
+
BLOCKNUMS = [12,17,20,26]
|
57 |
+
BLOCKIDS=[BLOCKID12,BLOCKID17,BLOCKID20,BLOCKID26]
|
58 |
+
|
59 |
+
BLOCKS=["encoder",
|
60 |
+
"diffusion_model_input_blocks_0_",
|
61 |
+
"diffusion_model_input_blocks_1_",
|
62 |
+
"diffusion_model_input_blocks_2_",
|
63 |
+
"diffusion_model_input_blocks_3_",
|
64 |
+
"diffusion_model_input_blocks_4_",
|
65 |
+
"diffusion_model_input_blocks_5_",
|
66 |
+
"diffusion_model_input_blocks_6_",
|
67 |
+
"diffusion_model_input_blocks_7_",
|
68 |
+
"diffusion_model_input_blocks_8_",
|
69 |
+
"diffusion_model_input_blocks_9_",
|
70 |
+
"diffusion_model_input_blocks_10_",
|
71 |
+
"diffusion_model_input_blocks_11_",
|
72 |
+
"diffusion_model_middle_block_",
|
73 |
+
"diffusion_model_output_blocks_0_",
|
74 |
+
"diffusion_model_output_blocks_1_",
|
75 |
+
"diffusion_model_output_blocks_2_",
|
76 |
+
"diffusion_model_output_blocks_3_",
|
77 |
+
"diffusion_model_output_blocks_4_",
|
78 |
+
"diffusion_model_output_blocks_5_",
|
79 |
+
"diffusion_model_output_blocks_6_",
|
80 |
+
"diffusion_model_output_blocks_7_",
|
81 |
+
"diffusion_model_output_blocks_8_",
|
82 |
+
"diffusion_model_output_blocks_9_",
|
83 |
+
"diffusion_model_output_blocks_10_",
|
84 |
+
"diffusion_model_output_blocks_11_",
|
85 |
+
"embedders"]
|
86 |
+
|
87 |
+
loopstopper = True
|
88 |
+
|
89 |
+
ATYPES =["none","Block ID","values","seed","Original Weights","elements"]
|
90 |
+
|
91 |
+
DEF_WEIGHT_PRESET = "\
|
92 |
+
NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
|
93 |
+
ALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\n\
|
94 |
+
INS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
|
95 |
+
IND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
|
96 |
+
INALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
|
97 |
+
MIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\n\
|
98 |
+
OUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\n\
|
99 |
+
OUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\n\
|
100 |
+
OUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\n\
|
101 |
+
ALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
|
102 |
+
|
103 |
+
scriptpath = os.path.dirname(os.path.abspath(__file__))
|
104 |
+
|
105 |
+
class Script(modules.scripts.Script):
|
106 |
+
def __init__(self):
|
107 |
+
self.log = {}
|
108 |
+
self.stops = {}
|
109 |
+
self.starts = {}
|
110 |
+
self.active = False
|
111 |
+
self.lora = {}
|
112 |
+
self.lycoris = {}
|
113 |
+
self.networks = {}
|
114 |
+
|
115 |
+
self.stopsf = []
|
116 |
+
self.startsf = []
|
117 |
+
self.uf = []
|
118 |
+
self.lf = []
|
119 |
+
self.ef = []
|
120 |
+
|
121 |
+
def title(self):
|
122 |
+
return "LoRA Block Weight"
|
123 |
+
|
124 |
+
def show(self, is_img2img):
|
125 |
+
return modules.scripts.AlwaysVisible
|
126 |
+
|
127 |
+
def ui(self, is_img2img):
|
128 |
+
LWEIGHTSPRESETS = DEF_WEIGHT_PRESET
|
129 |
+
|
130 |
+
runorigin = scripts.scripts_txt2img.run
|
131 |
+
runorigini = scripts.scripts_img2img.run
|
132 |
+
|
133 |
+
scriptpath = os.path.dirname(os.path.abspath(__file__))
|
134 |
+
path_root = scripts.basedir()
|
135 |
+
|
136 |
+
extpath = os.path.join(scriptpath, "lbwpresets.txt")
|
137 |
+
extpathe = os.path.join(scriptpath, "elempresets.txt")
|
138 |
+
filepath = os.path.join(path_root,"scripts", "lbwpresets.txt")
|
139 |
+
filepathe = os.path.join(path_root,"scripts", "elempresets.txt")
|
140 |
+
|
141 |
+
if os.path.isfile(filepath) and not os.path.isfile(extpath):
|
142 |
+
shutil.move(filepath,extpath)
|
143 |
+
|
144 |
+
if os.path.isfile(filepathe) and not os.path.isfile(extpathe):
|
145 |
+
shutil.move(filepathe,extpathe)
|
146 |
+
|
147 |
+
lbwpresets=""
|
148 |
+
|
149 |
+
try:
|
150 |
+
with open(extpath,encoding="utf-8") as f:
|
151 |
+
lbwpresets = f.read()
|
152 |
+
except OSError as e:
|
153 |
+
lbwpresets=LWEIGHTSPRESETS
|
154 |
+
if not os.path.isfile(extpath):
|
155 |
+
try:
|
156 |
+
with open(extpath,mode = 'w',encoding="utf-8") as f:
|
157 |
+
f.write(lbwpresets)
|
158 |
+
except:
|
159 |
+
pass
|
160 |
+
|
161 |
+
try:
|
162 |
+
with open(extpathe,encoding="utf-8") as f:
|
163 |
+
elempresets = f.read()
|
164 |
+
except OSError as e:
|
165 |
+
elempresets=ELEMPRESETS
|
166 |
+
if not os.path.isfile(extpathe):
|
167 |
+
try:
|
168 |
+
with open(extpathe,mode = 'w',encoding="utf-8") as f:
|
169 |
+
f.write(elempresets)
|
170 |
+
except:
|
171 |
+
pass
|
172 |
+
|
173 |
+
loraratios=lbwpresets.splitlines()
|
174 |
+
lratios={}
|
175 |
+
for i,l in enumerate(loraratios):
|
176 |
+
if checkloadcond(l) : continue
|
177 |
+
lratios[l.split(":")[0]]=l.split(":")[1]
|
178 |
+
ratiostags = [k for k in lratios.keys()]
|
179 |
+
ratiostags = ",".join(ratiostags)
|
180 |
+
|
181 |
+
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
|
182 |
+
args = cmd_args.parser.parse_args()
|
183 |
+
else:
|
184 |
+
args, _ = cmd_args.parser.parse_known_args()
|
185 |
+
if args.api:
|
186 |
+
register()
|
187 |
+
|
188 |
+
with gr.Accordion(f"LoRA Block Weight : {active_i if is_img2img else active_t}",open = False) as acc:
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column(min_width = 50, scale=1):
|
191 |
+
lbw_useblocks = gr.Checkbox(value = True,label="Active",interactive =True,elem_id="lbw_active")
|
192 |
+
debug = gr.Checkbox(value = False,label="Debug",interactive =True,elem_id="lbw_debug")
|
193 |
+
with gr.Column(scale=5):
|
194 |
+
bw_ratiotags= gr.TextArea(label="",value=ratiostags,visible =True,interactive =True,elem_id="lbw_ratios")
|
195 |
+
with gr.Accordion("XYZ plot",open = False):
|
196 |
+
gr.HTML(value='<p style= "word-wrap:break-word;">changeable blocks : BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11</p>')
|
197 |
+
xyzsetting = gr.Radio(label = "Active",choices = ["Disable","XYZ plot","Effective Block Analyzer"], value ="Disable",type = "index")
|
198 |
+
with gr.Row(visible = False) as esets:
|
199 |
+
diffcol = gr.Radio(label = "diff image color",choices = ["black","white"], value ="black",type = "value",interactive =True)
|
200 |
+
revxy = gr.Checkbox(value = False,label="change X-Y",interactive =True,elem_id="lbw_changexy")
|
201 |
+
thresh = gr.Textbox(label="difference threshold",lines=1,value="20",interactive =True,elem_id="diff_thr")
|
202 |
+
xtype = gr.Dropdown(label="X Types", choices=[x for x in ATYPES], value=ATYPES [2],interactive =True,elem_id="lbw_xtype")
|
203 |
+
xmen = gr.Textbox(label="X Values",lines=1,value="0,0.25,0.5,0.75,1",interactive =True,elem_id="lbw_xmen")
|
204 |
+
ytype = gr.Dropdown(label="Y Types", choices=[y for y in ATYPES], value=ATYPES [1],interactive =True,elem_id="lbw_ytype")
|
205 |
+
ymen = gr.Textbox(label="Y Values" ,lines=1,value="IN05-OUT05",interactive =True,elem_id="lbw_ymen")
|
206 |
+
ztype = gr.Dropdown(label="Z type", choices=[z for z in ATYPES], value=ATYPES[0],interactive =True,elem_id="lbw_ztype")
|
207 |
+
zmen = gr.Textbox(label="Z values",lines=1,value="",interactive =True,elem_id="lbw_zmen")
|
208 |
+
|
209 |
+
exmen = gr.Textbox(label="Range",lines=1,value="0.5,1",interactive =True,elem_id="lbw_exmen",visible = False)
|
210 |
+
eymen = gr.Textbox(label="Blocks (12ALL,17ALL,20ALL,26ALL also can be used)" ,lines=1,value="BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11",interactive =True,elem_id="lbw_eymen",visible = False)
|
211 |
+
ecount = gr.Number(value=1, label="number of seed", interactive=True, visible = True)
|
212 |
+
|
213 |
+
with gr.Accordion("Weights setting",open = True):
|
214 |
+
with gr.Row():
|
215 |
+
reloadtext = gr.Button(value="Reload Presets",variant='primary',elem_id="lbw_reload")
|
216 |
+
reloadtags = gr.Button(value="Reload Tags",variant='primary',elem_id="lbw_reload")
|
217 |
+
savetext = gr.Button(value="Save Presets",variant='primary',elem_id="lbw_savetext")
|
218 |
+
openeditor = gr.Button(value="Open TextEditor",variant='primary',elem_id="lbw_openeditor")
|
219 |
+
lbw_loraratios = gr.TextArea(label="",value=lbwpresets,visible =True,interactive = True,elem_id="lbw_ratiospreset")
|
220 |
+
|
221 |
+
with gr.Accordion("Elemental",open = False):
|
222 |
+
with gr.Row():
|
223 |
+
e_reloadtext = gr.Button(value="Reload Presets",variant='primary',elem_id="lbw_reload")
|
224 |
+
e_savetext = gr.Button(value="Save Presets",variant='primary',elem_id="lbw_savetext")
|
225 |
+
e_openeditor = gr.Button(value="Open TextEditor",variant='primary',elem_id="lbw_openeditor")
|
226 |
+
elemsets = gr.Checkbox(value = False,label="print change",interactive =True,elem_id="lbw_print_change")
|
227 |
+
elemental = gr.TextArea(label="Identifer:BlockID:Elements:Ratio,...,separated by empty line ",value = elempresets,interactive =True,elem_id="element")
|
228 |
+
|
229 |
+
d_true = gr.Checkbox(value = True,visible = False)
|
230 |
+
d_false = gr.Checkbox(value = False,visible = False)
|
231 |
+
|
232 |
+
lbw_useblocks.change(fn=lambda x:gr.update(label = f"LoRA Block Weight : {'Active' if x else 'Not Active'}"),inputs=lbw_useblocks, outputs=[acc])
|
233 |
+
|
234 |
+
import subprocess
|
235 |
+
def openeditors(b):
|
236 |
+
path = extpath if b else extpathe
|
237 |
+
subprocess.Popen(['start', path], shell=True)
|
238 |
+
|
239 |
+
def reloadpresets(isweight):
|
240 |
+
if isweight:
|
241 |
+
try:
|
242 |
+
with open(extpath,encoding="utf-8") as f:
|
243 |
+
return f.read()
|
244 |
+
except OSError as e:
|
245 |
+
pass
|
246 |
+
else:
|
247 |
+
try:
|
248 |
+
with open(extpath,encoding="utf-8") as f:
|
249 |
+
return f.read()
|
250 |
+
except OSError as e:
|
251 |
+
pass
|
252 |
+
|
253 |
+
def tagdicter(presets):
|
254 |
+
presets=presets.splitlines()
|
255 |
+
wdict={}
|
256 |
+
for l in presets:
|
257 |
+
if checkloadcond(l) : continue
|
258 |
+
w=[]
|
259 |
+
if ":" in l :
|
260 |
+
key = l.split(":",1)[0]
|
261 |
+
w = l.split(":",1)[1]
|
262 |
+
if any(len([w for w in w.split(",")]) == x for x in BLOCKNUMS):
|
263 |
+
wdict[key.strip()]=w
|
264 |
+
return ",".join(list(wdict.keys()))
|
265 |
+
|
266 |
+
def savepresets(text,isweight):
|
267 |
+
if isweight:
|
268 |
+
with open(extpath,mode = 'w',encoding="utf-8") as f:
|
269 |
+
f.write(text)
|
270 |
+
else:
|
271 |
+
with open(extpathe,mode = 'w',encoding="utf-8") as f:
|
272 |
+
f.write(text)
|
273 |
+
|
274 |
+
reloadtext.click(fn=reloadpresets,inputs=[d_true],outputs=[lbw_loraratios])
|
275 |
+
reloadtags.click(fn=tagdicter,inputs=[lbw_loraratios],outputs=[bw_ratiotags])
|
276 |
+
savetext.click(fn=savepresets,inputs=[lbw_loraratios,d_true],outputs=[])
|
277 |
+
openeditor.click(fn=openeditors,inputs=[d_true],outputs=[])
|
278 |
+
|
279 |
+
e_reloadtext.click(fn=reloadpresets,inputs=[d_false],outputs=[elemental])
|
280 |
+
e_savetext.click(fn=savepresets,inputs=[elemental,d_false],outputs=[])
|
281 |
+
e_openeditor.click(fn=openeditors,inputs=[d_false],outputs=[])
|
282 |
+
|
283 |
+
def urawaza(active):
|
284 |
+
if active > 0:
|
285 |
+
register()
|
286 |
+
scripts.scripts_txt2img.run = newrun
|
287 |
+
scripts.scripts_img2img.run = newrun
|
288 |
+
if active == 1:return [*[gr.update(visible = True) for x in range(6)],*[gr.update(visible = False) for x in range(4)]]
|
289 |
+
else:return [*[gr.update(visible = False) for x in range(6)],*[gr.update(visible = True) for x in range(4)]]
|
290 |
+
else:
|
291 |
+
scripts.scripts_txt2img.run = runorigin
|
292 |
+
scripts.scripts_img2img.run = runorigini
|
293 |
+
return [*[gr.update(visible = True) for x in range(6)],*[gr.update(visible = False) for x in range(4)]]
|
294 |
+
|
295 |
+
xyzsetting.change(fn=urawaza,inputs=[xyzsetting],outputs =[xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,ecount,esets])
|
296 |
+
|
297 |
+
return lbw_loraratios,lbw_useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,ecount,diffcol,thresh,revxy,elemental,elemsets,debug
|
298 |
+
|
299 |
+
def process(self, p, loraratios,useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,ecount,diffcol,thresh,revxy,elemental,elemsets,debug):
|
300 |
+
#print("self =",self,"p =",p,"presets =",loraratios,"useblocks =",useblocks,"xyzsettings =",xyzsetting,"xtype =",xtype,"xmen =",xmen,"ytype =",ytype,"ymen =",ymen,"ztype =",ztype,"zmen =",zmen)
|
301 |
+
#Note that this does not use the default arg syntax because the default args are supposed to be at the end of the function
|
302 |
+
if(loraratios == None):
|
303 |
+
loraratios = DEF_WEIGHT_PRESET
|
304 |
+
if(useblocks == None):
|
305 |
+
useblocks = True
|
306 |
+
|
307 |
+
lorachecker(self)
|
308 |
+
self.log["enable LBW"] = useblocks
|
309 |
+
self.log["registerd"] = registerd
|
310 |
+
|
311 |
+
if useblocks:
|
312 |
+
self.active = True
|
313 |
+
loraratios=loraratios.splitlines()
|
314 |
+
elemental = elemental.split("\n\n") if elemental is not None else []
|
315 |
+
lratios={}
|
316 |
+
elementals={}
|
317 |
+
for l in loraratios:
|
318 |
+
if checkloadcond(l) : continue
|
319 |
+
l0=l.split(":",1)[0]
|
320 |
+
lratios[l0.strip()]=l.split(":",1)[1]
|
321 |
+
for e in elemental:
|
322 |
+
if ":" not in e: continue
|
323 |
+
e0=e.split(":",1)[0]
|
324 |
+
elementals[e0.strip()]=e.split(":",1)[1]
|
325 |
+
if elemsets : print(xyelem)
|
326 |
+
if xyzsetting and "XYZ" in p.prompt:
|
327 |
+
lratios["XYZ"] = lxyz
|
328 |
+
lratios["ZYX"] = lzyx
|
329 |
+
if xyelem != "":
|
330 |
+
if "XYZ" in elementals.keys():
|
331 |
+
elementals["XYZ"] = elementals["XYZ"] + ","+ xyelem
|
332 |
+
else:
|
333 |
+
elementals["XYZ"] = xyelem
|
334 |
+
self.lratios = lratios
|
335 |
+
self.elementals = elementals
|
336 |
+
global princ
|
337 |
+
princ = elemsets
|
338 |
+
|
339 |
+
if not hasattr(self,"lbt_dr_callbacks"):
|
340 |
+
self.lbt_dr_callbacks = on_cfg_denoiser(self.denoiser_callback)
|
341 |
+
|
342 |
+
def denoiser_callback(self, params: CFGDenoiserParams):
|
343 |
+
def setparams(self, key, te, u ,sets):
|
344 |
+
for dicts in [self.lora,self.lycoris,self.networks]:
|
345 |
+
for lora in dicts:
|
346 |
+
if lora.name.split("_in_LBW_")[0] == key:
|
347 |
+
lora.te_multiplier = te
|
348 |
+
lora.unet_multiplier = u
|
349 |
+
sets.append(key)
|
350 |
+
|
351 |
+
if forge and self.active:
|
352 |
+
if params.sampling_step in self.startsf:
|
353 |
+
shared.sd_model.forge_objects.unet.unpatch_model(device_to=devices.device)
|
354 |
+
for key, vals in shared.sd_model.forge_objects.unet.patches.items():
|
355 |
+
n_vals = []
|
356 |
+
lvals = [val for val in vals if val[1][0] in LORAS]
|
357 |
+
for s, v, m, l, e in zip(self.startsf, lvals, self.uf, self.lf, self.ef):
|
358 |
+
if s is not None and s == params.sampling_step:
|
359 |
+
ratio, errormodules = ratiodealer(key.replace(".","_"), l, e)
|
360 |
+
n_vals.append((ratio * m, *v[1:]))
|
361 |
+
else:
|
362 |
+
n_vals.append(v)
|
363 |
+
shared.sd_model.forge_objects.unet.patches[key] = n_vals
|
364 |
+
shared.sd_model.forge_objects.unet.patch_model()
|
365 |
+
|
366 |
+
if params.sampling_step in self.stopsf:
|
367 |
+
shared.sd_model.forge_objects.unet.unpatch_model(device_to=devices.device)
|
368 |
+
for key, vals in shared.sd_model.forge_objects.unet.patches.items():
|
369 |
+
n_vals = []
|
370 |
+
lvals = [val for val in vals if val[1][0] in LORAS]
|
371 |
+
for s, v, m, l, e in zip(self.stopsf, lvals, self.uf, self.lf, self.ef):
|
372 |
+
if s is not None and s == params.sampling_step:
|
373 |
+
n_vals.append((0, *v[1:]))
|
374 |
+
else:
|
375 |
+
n_vals.append(v)
|
376 |
+
shared.sd_model.forge_objects.unet.patches[key] = n_vals
|
377 |
+
shared.sd_model.forge_objects.unet.patch_model()
|
378 |
+
|
379 |
+
elif self.active:
|
380 |
+
if self.starts and params.sampling_step == 0:
|
381 |
+
for key, step_te_u in self.starts.items():
|
382 |
+
setparams(self, key, 0, 0, [])
|
383 |
+
#print("\nstart 0", self, key, 0, 0, [])
|
384 |
+
|
385 |
+
if self.starts:
|
386 |
+
sets = []
|
387 |
+
for key, step_te_u in self.starts.items():
|
388 |
+
step, te, u = step_te_u
|
389 |
+
if params.sampling_step > step - 2:
|
390 |
+
setparams(self, key, te, u, sets)
|
391 |
+
#print("\nstart", self, key, u, te, sets)
|
392 |
+
for key in sets:
|
393 |
+
del self.starts[key]
|
394 |
+
|
395 |
+
if self.stops:
|
396 |
+
sets = []
|
397 |
+
for key, step in self.stops.items():
|
398 |
+
if params.sampling_step > step - 2:
|
399 |
+
setparams(self, key, 0, 0, sets)
|
400 |
+
#print("\nstop", self, key, 0, 0, sets)
|
401 |
+
for key in sets:
|
402 |
+
del self.stops[key]
|
403 |
+
|
404 |
+
def before_process_batch(self, p, loraratios,useblocks,*args,**kwargs):
|
405 |
+
if useblocks:
|
406 |
+
resetmemory()
|
407 |
+
if not self.isnet: p.disable_extra_networks = False
|
408 |
+
global prompts
|
409 |
+
prompts = kwargs["prompts"].copy()
|
410 |
+
|
411 |
+
def process_batch(self, p, loraratios,useblocks,*args,**kwargs):
|
412 |
+
if useblocks:
|
413 |
+
if not self.isnet: p.disable_extra_networks = True
|
414 |
+
|
415 |
+
o_prompts = [p.prompt]
|
416 |
+
for prompt in prompts:
|
417 |
+
if "<lora" in prompt or "<lyco" in prompt:
|
418 |
+
o_prompts = prompts.copy()
|
419 |
+
if not self.isnet: loradealer(self, o_prompts ,self.lratios,self.elementals)
|
420 |
+
|
421 |
+
def postprocess(self, p, processed, presets,useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,ecount,diffcol,thresh,revxy,elemental,elemsets,debug,*args):
|
422 |
+
if not useblocks:
|
423 |
+
return
|
424 |
+
lora = importer(self)
|
425 |
+
emb_db = sd_hijack.model_hijack.embedding_db
|
426 |
+
|
427 |
+
for net in lora.loaded_loras:
|
428 |
+
if hasattr(net,"bundle_embeddings"):
|
429 |
+
for emb_name, embedding in net.bundle_embeddings.items():
|
430 |
+
if embedding.loaded:
|
431 |
+
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
|
432 |
+
|
433 |
+
lora.loaded_loras.clear()
|
434 |
+
|
435 |
+
if forge:
|
436 |
+
sd_models.model_data.get_sd_model().current_lora_hash = None
|
437 |
+
shared.sd_model.forge_objects_after_applying_lora.unet.unpatch_model()
|
438 |
+
shared.sd_model.forge_objects_after_applying_lora.clip.patcher.unpatch_model()
|
439 |
+
|
440 |
+
global lxyz,lzyx,xyelem
|
441 |
+
lxyz = lzyx = xyelem = ""
|
442 |
+
if debug:
|
443 |
+
print(self.log)
|
444 |
+
gc.collect()
|
445 |
+
|
446 |
+
def after_extra_networks_activate(self, p, presets,useblocks, *args, **kwargs):
|
447 |
+
if useblocks:
|
448 |
+
loradealer(self, kwargs["prompts"] ,self.lratios,self.elementals,kwargs["extra_network_data"])
|
449 |
+
|
450 |
+
def run(self,p,presets,useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,ecount,diffcol,thresh,revxy,elemental,elemsets,debug):
|
451 |
+
if not useblocks:
|
452 |
+
return
|
453 |
+
self.__init__()
|
454 |
+
self.log["pass XYZ"] = True
|
455 |
+
self.log["XYZsets"] = xyzsetting
|
456 |
+
self.log["enable LBW"] = useblocks
|
457 |
+
|
458 |
+
if xyzsetting >0:
|
459 |
+
lorachecker(self)
|
460 |
+
lora = importer(self)
|
461 |
+
loraratios=presets.splitlines()
|
462 |
+
lratios={}
|
463 |
+
for l in loraratios:
|
464 |
+
if checkloadcond(l) : continue
|
465 |
+
l0=l.split(":",1)[0]
|
466 |
+
lratios[l0.strip()]=l.split(":",1)[1]
|
467 |
+
|
468 |
+
if "XYZ" in p.prompt:
|
469 |
+
base = lratios["XYZ"] if "XYZ" in lratios.keys() else "1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1"
|
470 |
+
else: return
|
471 |
+
|
472 |
+
for i, all in enumerate(["12ALL","17ALL","20ALL","26ALL"]):
|
473 |
+
if eymen == all:
|
474 |
+
eymen = ",".join(BLOCKIDS[i])
|
475 |
+
|
476 |
+
if xyzsetting > 1:
|
477 |
+
xmen,ymen = exmen,eymen
|
478 |
+
xtype,ytype = "values","ID"
|
479 |
+
ebase = xmen.split(",")[1]
|
480 |
+
ebase = [ebase.strip()]*26
|
481 |
+
base = ",".join(ebase)
|
482 |
+
ztype = ""
|
483 |
+
if ecount > 1:
|
484 |
+
ztype = "seed"
|
485 |
+
zmen = ",".join([str(random.randrange(4294967294)) for x in range(int(ecount))])
|
486 |
+
|
487 |
+
#ATYPES =["none","Block ID","values","seed","Base Weights"]
|
488 |
+
|
489 |
+
def dicedealer(am):
|
490 |
+
for i,a in enumerate(am):
|
491 |
+
if a =="-1": am[i] = str(random.randrange(4294967294))
|
492 |
+
print(f"the die was thrown : {am}")
|
493 |
+
|
494 |
+
if p.seed == -1: p.seed = str(random.randrange(4294967294))
|
495 |
+
|
496 |
+
#print(f"xs:{xmen},ys:{ymen},zs:{zmen}")
|
497 |
+
|
498 |
+
def adjuster(a,at):
|
499 |
+
if "none" in at:a = ""
|
500 |
+
a = [a.strip() for a in a.split(',')]
|
501 |
+
if "seed" in at:dicedealer(a)
|
502 |
+
return a
|
503 |
+
|
504 |
+
xs = adjuster(xmen,xtype)
|
505 |
+
ys = adjuster(ymen,ytype)
|
506 |
+
zs = adjuster(zmen,ztype)
|
507 |
+
|
508 |
+
ids = alpha =seed = ""
|
509 |
+
p.batch_size = 1
|
510 |
+
|
511 |
+
print(f"xs:{xs},ys:{ys},zs:{zs}")
|
512 |
+
|
513 |
+
images = []
|
514 |
+
|
515 |
+
def weightsdealer(alpha,ids,base):
|
516 |
+
#print(f"weights from : {base}")
|
517 |
+
ids = [z.strip() for z in ids.split(' ')]
|
518 |
+
weights_t = [w.strip() for w in base.split(',')]
|
519 |
+
blockid = BLOCKIDS[BLOCKNUMS.index(len(weights_t))]
|
520 |
+
if ids[0]!="NOT":
|
521 |
+
flagger=[False]*len(weights_t)
|
522 |
+
changer = True
|
523 |
+
else:
|
524 |
+
flagger=[True]*len(weights_t)
|
525 |
+
changer = False
|
526 |
+
for id in ids:
|
527 |
+
if id =="NOT":continue
|
528 |
+
if "-" in id:
|
529 |
+
it = [it.strip() for it in id.split('-')]
|
530 |
+
if blockid.index(it[1]) > blockid.index(it[0]):
|
531 |
+
flagger[blockid.index(it[0]):blockid.index(it[1])+1] = [changer]*(blockid.index(it[1])-blockid.index(it[0])+1)
|
532 |
+
else:
|
533 |
+
flagger[blockid.index(it[1]):blockid.index(it[0])+1] = [changer]*(blockid.index(it[0])-blockid.index(it[1])+1)
|
534 |
+
else:
|
535 |
+
flagger[blockid.index(id)] =changer
|
536 |
+
for i,f in enumerate(flagger):
|
537 |
+
if f:weights_t[i]=alpha
|
538 |
+
outext = ",".join(weights_t)
|
539 |
+
#print(f"weights changed: {outext}")
|
540 |
+
return outext
|
541 |
+
|
542 |
+
generatedbases=[]
|
543 |
+
def xyzdealer(a,at):
|
544 |
+
nonlocal ids,alpha,p,base,c_base,generatedbases
|
545 |
+
if "ID" in at:return
|
546 |
+
if "values" in at:alpha = a
|
547 |
+
if "seed" in at:
|
548 |
+
p.seed = int(a)
|
549 |
+
generatedbases=[]
|
550 |
+
if "Weights" in at:base =c_base = lratios[a]
|
551 |
+
if "elements" in at:
|
552 |
+
global xyelem
|
553 |
+
xyelem = a
|
554 |
+
|
555 |
+
def imagedupewatcher(baselist,basetocheck,currentiteration):
|
556 |
+
for idx,alreadygenerated in enumerate(baselist):
|
557 |
+
if (basetocheck == alreadygenerated):
|
558 |
+
# E.g., we already generated IND+OUTS and this is now OUTS+IND with identical weights.
|
559 |
+
baselist.insert(currentiteration-1, basetocheck)
|
560 |
+
return idx
|
561 |
+
return -1
|
562 |
+
|
563 |
+
def strThree(someNumber): # Returns 1.12345 as 1.123 and 1.0000 as 1
|
564 |
+
return format(someNumber, ".3f").rstrip('0').rstrip('.')
|
565 |
+
|
566 |
+
# Adds X and Y together using array addition.
|
567 |
+
# If both X and Y have a value in the same block then Y's is set to 0;
|
568 |
+
# both values are used due to both XY and YX being generated, but the diagonal then only show the first value.
|
569 |
+
# imagedupwatcher prevents duplicate images from being generated;
|
570 |
+
# when X and Y have non-overlapping blocks then the upper triangular images are identical to the lower ones.
|
571 |
+
def xyoriginalweightsdealer(x,y):
|
572 |
+
xweights = np.asarray(lratios[x].split(','), dtype=np.float32) # np array easier to add later
|
573 |
+
yweights = np.asarray(lratios[y].split(','), dtype=np.float32)
|
574 |
+
for idx,xval in np.ndenumerate(xweights):
|
575 |
+
yval = yweights[idx]
|
576 |
+
if xval != 0 and yval != 0:
|
577 |
+
yweights[idx] = 0
|
578 |
+
# Add xweights to yweights, round to 3 places,
|
579 |
+
# map floats to string with format of 3 decimals trailing zeroes and decimal stripped
|
580 |
+
baseListToStrings = list(map(strThree, np.around(np.add(xweights,yweights,),3).tolist()))
|
581 |
+
return ",".join(baseListToStrings)
|
582 |
+
|
583 |
+
grids = []
|
584 |
+
images =[]
|
585 |
+
|
586 |
+
totalcount = len(xs)*len(ys)*len(zs) if xyzsetting < 2 else len(xs)*len(ys)*len(zs) //2 +1
|
587 |
+
shared.total_tqdm.updateTotal(totalcount)
|
588 |
+
xc = yc =zc = 0
|
589 |
+
state.job_count = totalcount
|
590 |
+
totalcount = len(xs)*len(ys)*len(zs)
|
591 |
+
c_base = base
|
592 |
+
|
593 |
+
for z in zs:
|
594 |
+
generatedbases=[]
|
595 |
+
images = []
|
596 |
+
yc = 0
|
597 |
+
xyzdealer(z,ztype)
|
598 |
+
for y in ys:
|
599 |
+
xc = 0
|
600 |
+
xyzdealer(y,ytype)
|
601 |
+
for x in xs:
|
602 |
+
xyzdealer(x,xtype)
|
603 |
+
if "Weights" in xtype and "Weights" in ytype:
|
604 |
+
c_base = xyoriginalweightsdealer(x,y)
|
605 |
+
else:
|
606 |
+
if "ID" in xtype:
|
607 |
+
if "values" in ytype:c_base = weightsdealer(y,x,base)
|
608 |
+
if "values" in ztype:c_base = weightsdealer(z,x,base)
|
609 |
+
if "ID" in ytype:
|
610 |
+
if "values" in xtype:c_base = weightsdealer(x,y,base)
|
611 |
+
if "values" in ztype:c_base = weightsdealer(z,y,base)
|
612 |
+
if "ID" in ztype:
|
613 |
+
if "values" in xtype:c_base = weightsdealer(x,z,base)
|
614 |
+
if "values" in ytype:c_base = weightsdealer(y,z,base)
|
615 |
+
|
616 |
+
iteration = len(xs)*len(ys)*zc + yc*len(xs) +xc +1
|
617 |
+
print(f"X:{xtype}, {x},Y: {ytype},{y}, Z:{ztype},{z}, base:{c_base} ({iteration}/{totalcount})")
|
618 |
+
|
619 |
+
dupe_index = imagedupewatcher(generatedbases,c_base,iteration)
|
620 |
+
if dupe_index > -1:
|
621 |
+
print(f"Skipping generation of duplicate base:{c_base}")
|
622 |
+
images.append(images[dupe_index].copy())
|
623 |
+
xc += 1
|
624 |
+
continue
|
625 |
+
|
626 |
+
global lxyz,lzyx
|
627 |
+
lxyz = c_base
|
628 |
+
|
629 |
+
cr_base = c_base.split(",")
|
630 |
+
cr_base_t=[]
|
631 |
+
for x in cr_base:
|
632 |
+
if not identifier(x):
|
633 |
+
cr_base_t.append(str(1-float(x)))
|
634 |
+
else:
|
635 |
+
cr_base_t.append(x)
|
636 |
+
lzyx = ",".join(cr_base_t)
|
637 |
+
|
638 |
+
if not(xc == 1 and not (yc ==0 ) and xyzsetting >1):
|
639 |
+
lora.loaded_loras.clear()
|
640 |
+
p.cached_c = [None,None]
|
641 |
+
p.cached_uc = [None,None]
|
642 |
+
p.cached_hr_c = [None, None]
|
643 |
+
p.cached_hr_uc = [None, None]
|
644 |
+
processed:Processed = process_images(p)
|
645 |
+
images.append(processed.images[0])
|
646 |
+
generatedbases.insert(iteration-1, c_base)
|
647 |
+
xc += 1
|
648 |
+
yc += 1
|
649 |
+
zc += 1
|
650 |
+
origin = loranames(processed.all_prompts) + ", "+ znamer(ztype,z,base)
|
651 |
+
images,xst,yst = effectivechecker(images,xs.copy(),ys.copy(),diffcol,thresh,revxy) if xyzsetting >1 else (images,xs.copy(),ys.copy())
|
652 |
+
grids.append(smakegrid(images,xst,yst,origin,p))
|
653 |
+
processed.images= grids
|
654 |
+
lora.loaded_loras.clear()
|
655 |
+
return processed
|
656 |
+
|
657 |
+
def identifier(char):
|
658 |
+
return char[0] in ["R", "U", "X"]
|
659 |
+
|
660 |
+
def znamer(at,a,base):
|
661 |
+
if "ID" in at:return f"Block : {a}"
|
662 |
+
if "values" in at:return f"value : {a}"
|
663 |
+
if "seed" in at:return f"seed : {a}"
|
664 |
+
if "Weights" in at:return f"original weights :\n {base}"
|
665 |
+
else: return ""
|
666 |
+
|
667 |
+
def loranames(all_prompts):
|
668 |
+
_, extra_network_data = extra_networks.parse_prompts(all_prompts[0:1])
|
669 |
+
calledloras = extra_network_data["lora"] if "lyco" not in extra_network_data.keys() else extra_network_data["lyco"]
|
670 |
+
names = ""
|
671 |
+
for called in calledloras:
|
672 |
+
if len(called.items) <3:continue
|
673 |
+
names += called.items[0]
|
674 |
+
return names
|
675 |
+
|
676 |
+
def lorachecker(self):
|
677 |
+
try:
|
678 |
+
import networks
|
679 |
+
self.isnet = True
|
680 |
+
self.layer_name = "network_layer_name"
|
681 |
+
except:
|
682 |
+
self.isnet = False
|
683 |
+
self.layer_name = "lora_layer_name"
|
684 |
+
try:
|
685 |
+
import lora
|
686 |
+
self.islora = True
|
687 |
+
except:
|
688 |
+
pass
|
689 |
+
try:
|
690 |
+
import lycoris
|
691 |
+
self.islyco = True
|
692 |
+
except:
|
693 |
+
pass
|
694 |
+
self.onlyco = (not self.islora) and self.islyco
|
695 |
+
self.isxl = hasattr(shared.sd_model,"conditioner")
|
696 |
+
|
697 |
+
self.log["isnet"] = self.isnet
|
698 |
+
self.log["isxl"] = self.isxl
|
699 |
+
self.log["islora"] = self.islora
|
700 |
+
|
701 |
+
def resetmemory():
|
702 |
+
try:
|
703 |
+
import networks as nets
|
704 |
+
nets.networks_in_memory = {}
|
705 |
+
gc.collect()
|
706 |
+
|
707 |
+
except:
|
708 |
+
pass
|
709 |
+
|
710 |
+
def importer(self):
|
711 |
+
if self.onlyco:
|
712 |
+
# lycorisモジュールを動的にインポート
|
713 |
+
lora_module = importlib.import_module("lycoris")
|
714 |
+
return lora_module
|
715 |
+
else:
|
716 |
+
# loraモジュールを動的にインポート
|
717 |
+
lora_module = importlib.import_module("lora")
|
718 |
+
return lora_module
|
719 |
+
|
720 |
+
def loradealer(self, prompts,lratios,elementals, extra_network_data = None):
|
721 |
+
if extra_network_data is None:
|
722 |
+
_, extra_network_data = extra_networks.parse_prompts(prompts)
|
723 |
+
moduletypes = extra_network_data.keys()
|
724 |
+
|
725 |
+
for ltype in moduletypes:
|
726 |
+
lorans = []
|
727 |
+
lorars = []
|
728 |
+
te_multipliers = []
|
729 |
+
unet_multipliers = []
|
730 |
+
elements = []
|
731 |
+
starts = []
|
732 |
+
stops = []
|
733 |
+
fparams = []
|
734 |
+
load = False
|
735 |
+
go_lbw = False
|
736 |
+
|
737 |
+
if not (ltype == "lora" or ltype == "lyco") : continue
|
738 |
+
for called in extra_network_data[ltype]:
|
739 |
+
items = called.items
|
740 |
+
setnow = False
|
741 |
+
name = items[0]
|
742 |
+
te = syntaxdealer(items,"te=",1)
|
743 |
+
unet = syntaxdealer(items,"unet=",2)
|
744 |
+
te,unet = multidealer(te,unet)
|
745 |
+
|
746 |
+
weights = syntaxdealer(items,"lbw=",2) if syntaxdealer(items,"lbw=",2) is not None else syntaxdealer(items,"w=",2)
|
747 |
+
elem = syntaxdealer(items, "lbwe=",3)
|
748 |
+
start = syntaxdealer(items,"start=",None)
|
749 |
+
stop = syntaxdealer(items,"stop=",None)
|
750 |
+
start, stop = stepsdealer(syntaxdealer(items,"step=",None), start, stop)
|
751 |
+
|
752 |
+
if weights is not None and (weights in lratios or any(weights.count(",") == x - 1 for x in BLOCKNUMS)):
|
753 |
+
wei = lratios[weights] if weights in lratios else weights
|
754 |
+
ratios = [w.strip() for w in wei.split(",")]
|
755 |
+
for i,r in enumerate(ratios):
|
756 |
+
if r =="R":
|
757 |
+
ratios[i] = round(random.random(),3)
|
758 |
+
elif r == "U":
|
759 |
+
ratios[i] = round(random.uniform(-0.5,1.5),3)
|
760 |
+
elif r[0] == "X":
|
761 |
+
base = syntaxdealer(items,"x=", 3) if len(items) >= 4 else 1
|
762 |
+
ratios[i] = getinheritedweight(base, r)
|
763 |
+
else:
|
764 |
+
ratios[i] = float(r)
|
765 |
+
|
766 |
+
if len(ratios) != 26:
|
767 |
+
ratios = to26(ratios)
|
768 |
+
setnow = True
|
769 |
+
else:
|
770 |
+
ratios = [1] * 26
|
771 |
+
|
772 |
+
if elem in elementals:
|
773 |
+
setnow = True
|
774 |
+
elem = elementals[elem]
|
775 |
+
else:
|
776 |
+
elem = ""
|
777 |
+
|
778 |
+
if setnow:
|
779 |
+
go_lbw = True
|
780 |
+
fparams.append([unet,ratios,elem])
|
781 |
+
settolist([lorans,te_multipliers,unet_multipliers,lorars,elements,starts,stops],[name,te,unet,ratios,elem,start,stop])
|
782 |
+
|
783 |
+
if start:
|
784 |
+
self.starts[name] = [int(start),te,unet]
|
785 |
+
self.log["starts"] = load = True
|
786 |
+
|
787 |
+
if stop:
|
788 |
+
self.stops[name] = int(stop)
|
789 |
+
self.log["stops"] = load = True
|
790 |
+
|
791 |
+
self.startsf = [int(s) if s is not None else None for s in starts]
|
792 |
+
self.stopsf = [int(s) if s is not None else None for s in stops]
|
793 |
+
self.uf = unet_multipliers
|
794 |
+
self.lf = lorars
|
795 |
+
self.ef = elements
|
796 |
+
|
797 |
+
if self.isnet: ltype = "nets"
|
798 |
+
if forge: ltype = "forge"
|
799 |
+
if go_lbw or load: load_loras_blocks(self, lorans,lorars,te_multipliers,unet_multipliers,elements,ltype, starts=starts)
|
800 |
+
|
801 |
+
def stepsdealer(step, start, stop):
|
802 |
+
if step is None or "-" not in step:
|
803 |
+
return start, stop
|
804 |
+
return step.split("-")
|
805 |
+
|
806 |
+
def settolist(ls,vs):
|
807 |
+
for l, v in zip(ls,vs):
|
808 |
+
l.append(v)
|
809 |
+
|
810 |
+
def syntaxdealer(items,target,index): #type "unet=", "x=", "lwbe="
|
811 |
+
for item in items:
|
812 |
+
if target in item:
|
813 |
+
return item.replace(target,"")
|
814 |
+
if index is None or index + 1> len(items): return None
|
815 |
+
if "=" in items[index]:return None
|
816 |
+
return items[index] if "@" not in items[index] else 1
|
817 |
+
|
818 |
+
def isfloat(t):
|
819 |
+
try:
|
820 |
+
float(t)
|
821 |
+
return True
|
822 |
+
except:
|
823 |
+
return False
|
824 |
+
|
825 |
+
def multidealer(t, u):
|
826 |
+
if t is None and u is None:
|
827 |
+
return 1,1
|
828 |
+
elif t is None:
|
829 |
+
return float(u),float(u)
|
830 |
+
elif u is None:
|
831 |
+
return float(t), float(t)
|
832 |
+
else:
|
833 |
+
return float(t),float(u)
|
834 |
+
|
835 |
+
re_inherited_weight = re.compile(r"X([+-])?([\d.]+)?")
|
836 |
+
|
837 |
+
def getinheritedweight(weight, offset):
|
838 |
+
match = re_inherited_weight.search(offset)
|
839 |
+
if match.group(1) == "+":
|
840 |
+
return float(weight) + float(match.group(2))
|
841 |
+
elif match.group(1) == "-":
|
842 |
+
return float(weight) - float(match.group(2))
|
843 |
+
else:
|
844 |
+
return float(weight)
|
845 |
+
|
846 |
+
def load_loras_blocks(self, names, lwei,te,unet,elements,ltype = "lora", starts = None):
|
847 |
+
oldnew=[]
|
848 |
+
if "lora" == ltype:
|
849 |
+
lora = importer(self)
|
850 |
+
self.lora = lora.loaded_loras
|
851 |
+
for loaded in lora.loaded_loras:
|
852 |
+
for n, name in enumerate(names):
|
853 |
+
if name == loaded.name:
|
854 |
+
if lwei[n] == [1] * 26 and elements[n] == "": continue
|
855 |
+
lbw(loaded,lwei[n],elements[n])
|
856 |
+
setall(loaded,te[n],unet[n])
|
857 |
+
newname = loaded.name +"_in_LBW_"+ str(round(random.random(),3))
|
858 |
+
oldname = loaded.name
|
859 |
+
loaded.name = newname
|
860 |
+
oldnew.append([oldname,newname])
|
861 |
+
|
862 |
+
elif "lyco" == ltype:
|
863 |
+
import lycoris as lycomo
|
864 |
+
self.lycoris = lycomo.loaded_lycos
|
865 |
+
for loaded in lycomo.loaded_lycos:
|
866 |
+
for n, name in enumerate(names):
|
867 |
+
if name == loaded.name:
|
868 |
+
lbw(loaded,lwei[n],elements[n])
|
869 |
+
setall(loaded,te[n],unet[n])
|
870 |
+
|
871 |
+
elif "nets" == ltype:
|
872 |
+
import networks as nets
|
873 |
+
self.networks = nets.loaded_networks
|
874 |
+
for loaded in nets.loaded_networks:
|
875 |
+
for n, name in enumerate(names):
|
876 |
+
if name == loaded.name:
|
877 |
+
lbw(loaded,lwei[n],elements[n])
|
878 |
+
setall(loaded,te[n],unet[n])
|
879 |
+
|
880 |
+
elif "forge" == ltype:
|
881 |
+
lbwf(te, unet, lwei, elements, starts)
|
882 |
+
|
883 |
+
try:
|
884 |
+
import lora_ctl_network as ctl
|
885 |
+
for old,new in oldnew:
|
886 |
+
if old in ctl.lora_weights.keys():
|
887 |
+
ctl.lora_weights[new] = ctl.lora_weights[old]
|
888 |
+
except:
|
889 |
+
pass
|
890 |
+
|
891 |
+
def setall(m,te,unet):
|
892 |
+
m.name = m.name + "_in_LBW_"+ str(round(random.random(),3))
|
893 |
+
m.te_multiplier = te
|
894 |
+
m.unet_multiplier = unet
|
895 |
+
m.multiplier = unet
|
896 |
+
|
897 |
+
def smakegrid(imgs,xs,ys,currentmodel,p):
|
898 |
+
ver_texts = [[images.GridAnnotation(y)] for y in ys]
|
899 |
+
hor_texts = [[images.GridAnnotation(x)] for x in xs]
|
900 |
+
|
901 |
+
w, h = imgs[0].size
|
902 |
+
grid = Image.new('RGB', size=(len(xs) * w, len(ys) * h), color='black')
|
903 |
+
|
904 |
+
for i, img in enumerate(imgs):
|
905 |
+
grid.paste(img, box=(i % len(xs) * w, i // len(xs) * h))
|
906 |
+
|
907 |
+
grid = images.draw_grid_annotations(grid,w, h, hor_texts, ver_texts)
|
908 |
+
grid = draw_origin(grid, currentmodel,w*len(xs),h*len(ys),w)
|
909 |
+
if opts.grid_save:
|
910 |
+
images.save_image(grid, opts.outdir_txt2img_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=p.seed, grid=True, p=p)
|
911 |
+
|
912 |
+
return grid
|
913 |
+
|
914 |
+
def get_font(fontsize):
|
915 |
+
fontpath = os.path.join(scriptpath, "Roboto-Regular.ttf")
|
916 |
+
try:
|
917 |
+
return ImageFont.truetype(opts.font or fontpath, fontsize)
|
918 |
+
except Exception:
|
919 |
+
return ImageFont.truetype(fontpath, fontsize)
|
920 |
+
|
921 |
+
def draw_origin(grid, text,width,height,width_one):
|
922 |
+
grid_d= Image.new("RGB", (grid.width,grid.height), "white")
|
923 |
+
grid_d.paste(grid,(0,0))
|
924 |
+
|
925 |
+
d= ImageDraw.Draw(grid_d)
|
926 |
+
color_active = (0, 0, 0)
|
927 |
+
fontsize = (width+height)//25
|
928 |
+
fnt = get_font(fontsize)
|
929 |
+
|
930 |
+
if grid.width != width_one:
|
931 |
+
while d.multiline_textsize(text, font=fnt)[0] > width_one*0.75 and fontsize > 0:
|
932 |
+
fontsize -=1
|
933 |
+
fnt = get_font(fontsize)
|
934 |
+
d.multiline_text((0,0), text, font=fnt, fill=color_active,align="center")
|
935 |
+
return grid_d
|
936 |
+
|
937 |
+
def newrun(p, *args):
|
938 |
+
script_index = args[0]
|
939 |
+
|
940 |
+
if args[0] ==0:
|
941 |
+
script = None
|
942 |
+
for obj in scripts.scripts_txt2img.alwayson_scripts:
|
943 |
+
if "lora_block_weight" in obj.filename:
|
944 |
+
script = obj
|
945 |
+
script_args = args[script.args_from:script.args_to]
|
946 |
+
else:
|
947 |
+
script = scripts.scripts_txt2img.selectable_scripts[script_index-1]
|
948 |
+
|
949 |
+
if script is None:
|
950 |
+
return None
|
951 |
+
|
952 |
+
script_args = args[script.args_from:script.args_to]
|
953 |
+
|
954 |
+
processed = script.run(p, *script_args)
|
955 |
+
|
956 |
+
shared.total_tqdm.clear()
|
957 |
+
|
958 |
+
return processed
|
959 |
+
|
960 |
+
registerd = False
|
961 |
+
|
962 |
+
def register():
|
963 |
+
global registerd
|
964 |
+
registerd = True
|
965 |
+
for obj in scripts.scripts_txt2img.alwayson_scripts:
|
966 |
+
if "lora_block_weight" in obj.filename:
|
967 |
+
if obj not in scripts.scripts_txt2img.selectable_scripts:
|
968 |
+
scripts.scripts_txt2img.selectable_scripts.append(obj)
|
969 |
+
scripts.scripts_txt2img.titles.append("LoRA Block Weight")
|
970 |
+
for obj in scripts.scripts_img2img.alwayson_scripts:
|
971 |
+
if "lora_block_weight" in obj.filename:
|
972 |
+
if obj not in scripts.scripts_img2img.selectable_scripts:
|
973 |
+
scripts.scripts_img2img.selectable_scripts.append(obj)
|
974 |
+
scripts.scripts_img2img.titles.append("LoRA Block Weight")
|
975 |
+
|
976 |
+
def effectivechecker(imgs,ss,ls,diffcol,thresh,revxy):
|
977 |
+
orig = imgs[1]
|
978 |
+
imgs = imgs[::2]
|
979 |
+
diffs = []
|
980 |
+
outnum =[]
|
981 |
+
|
982 |
+
for img in imgs:
|
983 |
+
abs_diff = cv2.absdiff(np.array(img) , np.array(orig))
|
984 |
+
|
985 |
+
abs_diff_t = cv2.threshold(abs_diff, int(thresh), 255, cv2.THRESH_BINARY)[1]
|
986 |
+
res = abs_diff_t.astype(np.uint8)
|
987 |
+
percentage = (np.count_nonzero(res) * 100)/ res.size
|
988 |
+
if "white" in diffcol: abs_diff = cv2.bitwise_not(abs_diff)
|
989 |
+
outnum.append(percentage)
|
990 |
+
|
991 |
+
abs_diff = Image.fromarray(abs_diff)
|
992 |
+
|
993 |
+
diffs.append(abs_diff)
|
994 |
+
|
995 |
+
outs = []
|
996 |
+
for i in range(len(ls)):
|
997 |
+
ls[i] = ls[i] + "\n Diff : " + str(round(outnum[i],3)) + "%"
|
998 |
+
|
999 |
+
if not revxy:
|
1000 |
+
for diff,img in zip(diffs,imgs):
|
1001 |
+
outs.append(diff)
|
1002 |
+
outs.append(img)
|
1003 |
+
outs.append(orig)
|
1004 |
+
ss = ["diff",ss[0],"source"]
|
1005 |
+
return outs,ss,ls
|
1006 |
+
else:
|
1007 |
+
outs = [orig]*len(diffs) + imgs + diffs
|
1008 |
+
ss = ["source",ss[0],"diff"]
|
1009 |
+
return outs,ls,ss
|
1010 |
+
|
1011 |
+
def lbw(lora,lwei,elemental):
|
1012 |
+
elemental = elemental.split(",")
|
1013 |
+
for key in lora.modules.keys():
|
1014 |
+
ratio, errormodules = ratiodealer(key, lwei, elemental)
|
1015 |
+
|
1016 |
+
ltype = type(lora.modules[key]).__name__
|
1017 |
+
set = False
|
1018 |
+
if ltype in LORAANDSOON.keys():
|
1019 |
+
if "OFT" not in ltype:
|
1020 |
+
setattr(lora.modules[key],LORAANDSOON[ltype],torch.nn.Parameter(getattr(lora.modules[key],LORAANDSOON[ltype]) * ratio))
|
1021 |
+
else:
|
1022 |
+
setattr(lora.modules[key],LORAANDSOON[ltype],getattr(lora.modules[key],LORAANDSOON[ltype]) * ratio)
|
1023 |
+
set = True
|
1024 |
+
else:
|
1025 |
+
if hasattr(lora.modules[key],"up_model"):
|
1026 |
+
lora.modules[key].up_model.weight= torch.nn.Parameter(lora.modules[key].up_model.weight *ratio)
|
1027 |
+
#print("LoRA using LoCON")
|
1028 |
+
set = True
|
1029 |
+
else:
|
1030 |
+
lora.modules[key].up.weight= torch.nn.Parameter(lora.modules[key].up.weight *ratio)
|
1031 |
+
#print("LoRA")
|
1032 |
+
set = True
|
1033 |
+
if not set :
|
1034 |
+
print("unkwon LoRA")
|
1035 |
+
|
1036 |
+
if len(errormodules) > 0:
|
1037 |
+
print(errormodules)
|
1038 |
+
return lora
|
1039 |
+
|
1040 |
+
LORAS = ["lora", "loha", "lokr"]
|
1041 |
+
|
1042 |
+
def lbwf(mt, mu, lwei, elemental, starts):
|
1043 |
+
for key, vals in shared.sd_model.forge_objects_after_applying_lora.unet.patches.items():
|
1044 |
+
n_vals = []
|
1045 |
+
lvals = [val for val in vals if val[1][0] in LORAS]
|
1046 |
+
for v, m, l, e ,s in zip(lvals, mu, lwei, elemental, starts):
|
1047 |
+
ratio, errormodules = ratiodealer(key.replace(".","_"), l, e)
|
1048 |
+
n_vals.append((ratio * m if s is None else 0, *v[1:]))
|
1049 |
+
shared.sd_model.forge_objects_after_applying_lora.unet.patches[key] = n_vals
|
1050 |
+
|
1051 |
+
for key, vals in shared.sd_model.forge_objects_after_applying_lora.clip.patcher.patches.items():
|
1052 |
+
n_vals = []
|
1053 |
+
lvals = [val for val in vals if val[1][0] in LORAS]
|
1054 |
+
for v, m, l, e in zip(lvals, mt, lwei, elemental):
|
1055 |
+
ratio, errormodules = ratiodealer(key.replace(".","_"), l, e)
|
1056 |
+
n_vals.append((ratio * m, *v[1:]))
|
1057 |
+
shared.sd_model.forge_objects_after_applying_lora.clip.patcher.patches[key] = n_vals
|
1058 |
+
|
1059 |
+
def ratiodealer(key, lwei, elemental):
|
1060 |
+
ratio = 1
|
1061 |
+
picked = False
|
1062 |
+
errormodules = []
|
1063 |
+
currentblock = 0
|
1064 |
+
|
1065 |
+
for i,block in enumerate(BLOCKS):
|
1066 |
+
if block in key:
|
1067 |
+
if i == 26:
|
1068 |
+
i = 0
|
1069 |
+
ratio = lwei[i]
|
1070 |
+
picked = True
|
1071 |
+
currentblock = i
|
1072 |
+
|
1073 |
+
if not picked:
|
1074 |
+
errormodules.append(key)
|
1075 |
+
|
1076 |
+
if len(elemental) > 0:
|
1077 |
+
skey = key + BLOCKID26[currentblock]
|
1078 |
+
for d in elemental:
|
1079 |
+
if d.count(":") != 2 :continue
|
1080 |
+
dbs,dws,dr = (hyphener(d.split(":")[0]),d.split(":")[1],d.split(":")[2])
|
1081 |
+
dbs,dws = (dbs.split(" "), dws.split(" "))
|
1082 |
+
dbn,dbs = (True,dbs[1:]) if dbs[0] == "NOT" else (False,dbs)
|
1083 |
+
dwn,dws = (True,dws[1:]) if dws[0] == "NOT" else (False,dws)
|
1084 |
+
flag = dbn
|
1085 |
+
for db in dbs:
|
1086 |
+
if db in skey:
|
1087 |
+
flag = not dbn
|
1088 |
+
if flag:flag = dwn
|
1089 |
+
else:continue
|
1090 |
+
for dw in dws:
|
1091 |
+
if dw in skey:
|
1092 |
+
flag = not dwn
|
1093 |
+
if flag:
|
1094 |
+
dr = float(dr)
|
1095 |
+
if princ :print(dbs,dws,key,dr)
|
1096 |
+
ratio = dr
|
1097 |
+
|
1098 |
+
return ratio, errormodules
|
1099 |
+
|
1100 |
+
LORAANDSOON = {
|
1101 |
+
"LoraHadaModule" : "w1a",
|
1102 |
+
"LycoHadaModule" : "w1a",
|
1103 |
+
"NetworkModuleHada": "w1a",
|
1104 |
+
"FullModule" : "weight",
|
1105 |
+
"NetworkModuleFull": "weight",
|
1106 |
+
"IA3Module" : "w",
|
1107 |
+
"NetworkModuleIa3" : "w",
|
1108 |
+
"LoraKronModule" : "w1",
|
1109 |
+
"LycoKronModule" : "w1",
|
1110 |
+
"NetworkModuleLokr": "w1",
|
1111 |
+
"NetworkModuleGLora": "w1a",
|
1112 |
+
"NetworkModuleNorm": "w_norm",
|
1113 |
+
"NetworkModuleOFT": "scale"
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
def hyphener(t):
|
1117 |
+
t = t.split(" ")
|
1118 |
+
for i,e in enumerate(t):
|
1119 |
+
if "-" in e:
|
1120 |
+
e = e.split("-")
|
1121 |
+
if BLOCKID26.index(e[1]) > BLOCKID26.index(e[0]):
|
1122 |
+
t[i] = " ".join(BLOCKID26[BLOCKID26.index(e[0]):BLOCKID26.index(e[1])+1])
|
1123 |
+
else:
|
1124 |
+
t[i] = " ".join(BLOCKID26[BLOCKID26.index(e[1]):BLOCKID26.index(e[0])+1])
|
1125 |
+
return " ".join(t)
|
1126 |
+
|
1127 |
+
ELEMPRESETS="\
|
1128 |
+
ATTNDEEPON:IN05-OUT05:attn:1\n\n\
|
1129 |
+
ATTNDEEPOFF:IN05-OUT05:attn:0\n\n\
|
1130 |
+
PROJDEEPOFF:IN05-OUT05:proj:0\n\n\
|
1131 |
+
XYZ:::1"
|
1132 |
+
|
1133 |
+
def to26(ratios):
|
1134 |
+
ids = BLOCKIDS[BLOCKNUMS.index(len(ratios))]
|
1135 |
+
output = [0]*26
|
1136 |
+
for i, id in enumerate(ids):
|
1137 |
+
output[BLOCKID26.index(id)] = ratios[i]
|
1138 |
+
return output
|
1139 |
+
|
1140 |
+
def checkloadcond(l:str)->bool:
|
1141 |
+
# ここの条件分岐は読み込んだ行がBlock Waightの書式にあっているかを確認している。
|
1142 |
+
# [:]が含まれ、16個(LoRa)か25個(LyCORIS),11,19(XL),のカンマが含まれる形式であるうえ、
|
1143 |
+
# それがコメントアウト行(# foobar)でないことが求められている。
|
1144 |
+
# 逆に言うとコメントアウトしたいなら絶対"# "から始めることを要求している。
|
1145 |
+
|
1146 |
+
# This conditional branch is checking whether the loaded line conforms to the Block Weight format.
|
1147 |
+
# It is required that "[:]" is included, and the format contains either 16 commas (for LoRa) or 25 commas (for LyCORIS),
|
1148 |
+
# and it's not a comment line (e.g., "# foobar").
|
1149 |
+
# Conversely, if you want to comment out, it requires that it absolutely starts with "# ".
|
1150 |
+
res=(":" not in l) or (not any(l.count(",") == x - 1 for x in BLOCKNUMS)) or ("#" in l)
|
1151 |
+
#print("[debug]", res,repr(l))
|
1152 |
+
return res
|
Stable-diffusion/ui/nenen88.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys, time, shlex, subprocess
|
2 |
+
from IPython import get_ipython
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
xxx = Path("/kaggle/working")
|
6 |
+
zzz = Path("/kaggle/working/asd")
|
7 |
+
tmp = Path("/kaggle/temp")
|
8 |
+
|
9 |
+
pantat = f"curl -sLo {xxx}/pantat88.py https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py"
|
10 |
+
get_ipython().system(pantat)
|
11 |
+
|
12 |
+
sys.path.append(str(xxx))
|
13 |
+
from pantat88 import pull, say, download
|
14 |
+
|
15 |
+
def nenen():
|
16 |
+
os.chdir(zzz)
|
17 |
+
say("【 {red} Installing Stable Diffusion {d} 】 {red}")
|
18 |
+
|
19 |
+
time.sleep(2)
|
20 |
+
pull(f"https://github.com/gutris1/segsmaker asd {zzz}")
|
21 |
+
|
22 |
+
req_list = [
|
23 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/embeddings.zip {zzz}",
|
24 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/4x-UltraSharp.pth {zzz}/models/ESRGAN",
|
25 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/4x-AnimeSharp.pth {zzz}/models/ESRGAN",
|
26 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/4x_NMKD-Superscale-SP_178000_G.pth {zzz}/models/ESRGAN",
|
27 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/4x_RealisticRescaler_100000_G.pth {zzz}/models/ESRGAN",
|
28 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/8x_RealESRGAN.pth {zzz}/models/ESRGAN",
|
29 |
+
f"https://huggingface.co/pantat88/ui/resolve/main/4x_foolhardy_Remacri.pth {zzz}/models/ESRGAN",
|
30 |
+
f"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors {zzz}/models/VAE"]
|
31 |
+
|
32 |
+
for lines in req_list:
|
33 |
+
download(lines)
|
34 |
+
|
35 |
+
unzip = f"unzip -qo {zzz}/embeddings.zip -d {zzz}/embeddings && rm {zzz}/embeddings.zip"
|
36 |
+
get_ipython().system(unzip)
|
37 |
+
|
38 |
+
cmd = [
|
39 |
+
f"rm -rf {tmp}/* {zzz}/models/Stable-diffusion/tmp_ckpt {zzz}/models/Lora/tmp_lora {zzz}/outputs",
|
40 |
+
f"mkdir -p {zzz}/models/Lora",
|
41 |
+
f"ln -vs {tmp}/ckpt {zzz}/models/Stable-diffusion/tmp_ckpt",
|
42 |
+
f"ln -vs {tmp}/lora {zzz}/models/Lora/tmp_lora",
|
43 |
+
f"ln -vs {tmp}/outputs {zzz}/outputs",
|
44 |
+
f"mkdir -p {tmp}/ckpt {tmp}/lora {tmp}/outputs {tmp}/svd {tmp}/z123"]
|
45 |
+
|
46 |
+
for lines in cmd:
|
47 |
+
subprocess.run(shlex.split(lines), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
48 |
+
|
49 |
+
nenen()
|
50 |
+
(xxx / 'nenen88.py').unlink()
|
51 |
+
get_ipython().run_line_magic('run', f'{xxx}/pantat88.py')
|
52 |
+
os.chdir(xxx)
|
Stable-diffusion/ui/venv.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, sys, os, time, errno, shlex
|
2 |
+
from IPython.display import clear_output, Image, display
|
3 |
+
from IPython import get_ipython
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
xxx = Path('/kaggle/working')
|
7 |
+
script = xxx / 'venv.py'
|
8 |
+
img = xxx / "loading.png"
|
9 |
+
vnv = Path('/kaggle/venv')
|
10 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv-torch241-cu121.tar.lz4'
|
11 |
+
fn = Path(url).name
|
12 |
+
|
13 |
+
os.chdir(xxx)
|
14 |
+
sys.path.append(str(xxx))
|
15 |
+
|
16 |
+
get_ipython().system('curl -sLO https://raw.githubusercontent.com/gutris1/segsmaker/main/script/loading.png')
|
17 |
+
get_ipython().system('curl -sLO https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py')
|
18 |
+
display(Image(filename=str(img)))
|
19 |
+
time.sleep(1)
|
20 |
+
|
21 |
+
from pantat88 import say, download
|
22 |
+
say('【{red} Installing VENV{d} 】{red}')
|
23 |
+
|
24 |
+
req_list = [
|
25 |
+
"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/new_tunnel",
|
26 |
+
"curl -Lo /usr/bin/cl https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64",
|
27 |
+
"apt-get update",
|
28 |
+
"apt -y install pv",
|
29 |
+
"pip install -q aria2 cloudpickle",
|
30 |
+
"chmod +x /usr/bin/cl"
|
31 |
+
]
|
32 |
+
|
33 |
+
for items in req_list:
|
34 |
+
subprocess.run(shlex.split(items), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
35 |
+
|
36 |
+
def she_bang():
|
37 |
+
vnv_bin = vnv / 'bin'
|
38 |
+
old_shebang = b'#!/home/studio-lab-user/tmp/venv/bin/python3\n'
|
39 |
+
new_shebang = f"#!{vnv}/bin/python3\n"
|
40 |
+
|
41 |
+
for script in vnv_bin.glob('*'):
|
42 |
+
if script.is_file():
|
43 |
+
try:
|
44 |
+
with open(script, 'r+b') as file:
|
45 |
+
lines = file.readlines()
|
46 |
+
if lines and lines[0] == old_shebang:
|
47 |
+
lines[0] = new_shebang.encode('utf-8')
|
48 |
+
file.seek(0)
|
49 |
+
file.writelines(lines)
|
50 |
+
file.truncate()
|
51 |
+
print(f"Updated shebang in {script.name} to {new_shebang.strip()}")
|
52 |
+
|
53 |
+
except OSError as e:
|
54 |
+
if e.errno == 26:
|
55 |
+
print(f"Skipped {script.name}")
|
56 |
+
else:
|
57 |
+
print(f"Failed to update {script.name}: {e}")
|
58 |
+
|
59 |
+
def venv_install():
|
60 |
+
os.chdir('/kaggle')
|
61 |
+
download(url)
|
62 |
+
|
63 |
+
extract_venv = f'pv {fn} | lz4 -d | tar xf -'
|
64 |
+
get_ipython().system(extract_venv)
|
65 |
+
Path(fn).unlink()
|
66 |
+
|
67 |
+
get_ipython().system(f'rm -rf {vnv / "bin" / "pip*"}')
|
68 |
+
get_ipython().system(f'rm -rf {vnv / "bin" / "python*"}')
|
69 |
+
get_ipython().system(f'python3 -m venv {vnv}')
|
70 |
+
get_ipython().system(f'{vnv}/bin/python3 -m pip install -q --upgrade --force-reinstall pip')
|
71 |
+
|
72 |
+
venv_install()
|
73 |
+
she_bang()
|
74 |
+
|
75 |
+
clear_output(wait=True)
|
76 |
+
script.unlink()
|
77 |
+
os.chdir(xxx)
|
Stable-diffusion/ui/venv161.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import select
|
3 |
+
import errno
|
4 |
+
import pty
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
|
9 |
+
xxx = "/kaggle/working"
|
10 |
+
zzz = "/kaggle/working/asd"
|
11 |
+
|
12 |
+
os.system(f'wget -q https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py -O {xxx}/pantat88.py')
|
13 |
+
sys.path.append(xxx)
|
14 |
+
|
15 |
+
def venv_in():
|
16 |
+
from pantat88 import say
|
17 |
+
os.chdir('/kaggle')
|
18 |
+
say('【 {red} Installing VENV {d} 】 {red}')
|
19 |
+
os.system('apt -y install lz4 pv aria2 > /dev/null 2>&1')
|
20 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv-1_6_1.tar.lz4'
|
21 |
+
fn = 'venv-1_6_1.tar.lz4'
|
22 |
+
fc = f"aria2c --console-log-level=error --summary-interval=1 -c -x16 -s16 -k1M -j5 '{url}' -o '{fn}'"
|
23 |
+
woiii, appaa = pty.openpty()
|
24 |
+
qqqqq = subprocess.Popen(fc, shell=True, stdin=appaa, stdout=appaa, stderr=subprocess.STDOUT, close_fds=True)
|
25 |
+
os.close(appaa)
|
26 |
+
|
27 |
+
malam = ""
|
28 |
+
while True:
|
29 |
+
r, _, _ = select.select([woiii], [], [], 0.1)
|
30 |
+
if woiii in r:
|
31 |
+
try:
|
32 |
+
petualangan = os.read(woiii, 8192).decode()
|
33 |
+
malam += petualangan
|
34 |
+
for minggu in petualangan.splitlines():
|
35 |
+
if re.match(r'\[#\w{6}\s.*\]', minggu):
|
36 |
+
sys.stdout.write("\r" + " "*80 + "\r")
|
37 |
+
sys.stdout.write(f" {minggu}")
|
38 |
+
sys.stdout.flush()
|
39 |
+
break
|
40 |
+
|
41 |
+
except OSError as e:
|
42 |
+
if e.errno == errno.EIO:
|
43 |
+
break
|
44 |
+
|
45 |
+
if qqqqq.poll() is not None and not r:
|
46 |
+
break
|
47 |
+
|
48 |
+
kemarin = malam.find("Download Results:")
|
49 |
+
if kemarin != -1:
|
50 |
+
hhhhh = malam[kemarin:]
|
51 |
+
jjjjj = hhhhh.splitlines()
|
52 |
+
kkkkk = False
|
53 |
+
for ggggg in jjjjj:
|
54 |
+
if ggggg.strip().startswith("======+====+==========="):
|
55 |
+
kkkkk = True
|
56 |
+
print("\n" + f" {ggggg}")
|
57 |
+
continue
|
58 |
+
elif ggggg.strip().startswith("Status Legend:"):
|
59 |
+
break
|
60 |
+
elif kkkkk:
|
61 |
+
print(f" {ggggg}")
|
62 |
+
|
63 |
+
qqqqq.wait()
|
64 |
+
os.close(woiii)
|
65 |
+
|
66 |
+
extract_tar = f'pv {fn} | lz4 -d | tar xf -'
|
67 |
+
|
68 |
+
ikan, asin = pty.openpty()
|
69 |
+
proc = subprocess.Popen(extract_tar, shell=True, stdin=asin, stdout=asin, stderr=asin, close_fds=True)
|
70 |
+
os.close(asin)
|
71 |
+
|
72 |
+
while True:
|
73 |
+
r, _, _ = select.select([ikan], [], [], 0.1)
|
74 |
+
if ikan in r:
|
75 |
+
try:
|
76 |
+
jemuran = os.read(ikan, 1024).decode('utf-8', 'ignore')
|
77 |
+
print(jemuran, end='')
|
78 |
+
except OSError as e:
|
79 |
+
if e.errno == errno.EIO:
|
80 |
+
break
|
81 |
+
if proc.poll() is not None:
|
82 |
+
break
|
83 |
+
|
84 |
+
proc.wait()
|
85 |
+
os.close(ikan)
|
86 |
+
os.remove(fn)
|
87 |
+
|
88 |
+
oppai = '/kaggle/venv'
|
89 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "pip*")}')
|
90 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "python*")}')
|
91 |
+
os.system(f'python -m venv {oppai}')
|
92 |
+
say('【 {red} Setup Completed {d} 】 {red}')
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
venv_in()
|
96 |
+
assu = os.path.join(xxx, 'venv.py')
|
97 |
+
os.remove(assu)
|
Stable-diffusion/ui/venv180.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import select
|
3 |
+
import errno
|
4 |
+
import pty
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
|
9 |
+
xxx = "/kaggle/working"
|
10 |
+
zzz = "/kaggle/working/asd"
|
11 |
+
|
12 |
+
os.system('apt-get update > /dev/null 2>&1')
|
13 |
+
os.system('apt -y install lz4 pv aria2 > /dev/null 2>&1')
|
14 |
+
|
15 |
+
os.system(f'curl -sLo {xxx}/pantat88.py https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py')
|
16 |
+
os.system(f'curl -sLo {xxx}/nenen88.py https://huggingface.co/pantat88/ui/resolve/main/nenen88.py')
|
17 |
+
sys.path.append(xxx)
|
18 |
+
|
19 |
+
def venv_in():
|
20 |
+
from pantat88 import say
|
21 |
+
os.chdir('/kaggle')
|
22 |
+
say('【 {red} Installing VENV {d} 】 {red}')
|
23 |
+
|
24 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv-1_8_0.tar.lz4'
|
25 |
+
fn = 'venv-1_8_0.tar.lz4'
|
26 |
+
fc = f"aria2c --console-log-level=error --summary-interval=1 -c -x16 -s16 -k1M -j5 '{url}' -o '{fn}'"
|
27 |
+
woiii, appaa = pty.openpty()
|
28 |
+
qqqqq = subprocess.Popen(fc, shell=True, stdin=appaa, stdout=appaa, stderr=subprocess.STDOUT, close_fds=True)
|
29 |
+
os.close(appaa)
|
30 |
+
|
31 |
+
malam = ""
|
32 |
+
while True:
|
33 |
+
r, _, _ = select.select([woiii], [], [], 0.1)
|
34 |
+
if woiii in r:
|
35 |
+
try:
|
36 |
+
petualangan = os.read(woiii, 8192).decode()
|
37 |
+
malam += petualangan
|
38 |
+
for minggu in petualangan.splitlines():
|
39 |
+
if re.match(r'\[#\w{6}\s.*\]', minggu):
|
40 |
+
sys.stdout.write("\r" + " "*80 + "\r")
|
41 |
+
sys.stdout.write(f" {minggu}")
|
42 |
+
sys.stdout.flush()
|
43 |
+
break
|
44 |
+
|
45 |
+
except OSError as e:
|
46 |
+
if e.errno == errno.EIO:
|
47 |
+
break
|
48 |
+
|
49 |
+
if qqqqq.poll() is not None and not r:
|
50 |
+
break
|
51 |
+
|
52 |
+
kemarin = malam.find("Download Results:")
|
53 |
+
if kemarin != -1:
|
54 |
+
hhhhh = malam[kemarin:]
|
55 |
+
jjjjj = hhhhh.splitlines()
|
56 |
+
kkkkk = False
|
57 |
+
for ggggg in jjjjj:
|
58 |
+
if ggggg.strip().startswith("======+====+==========="):
|
59 |
+
kkkkk = True
|
60 |
+
print("\n" + f" {ggggg}")
|
61 |
+
continue
|
62 |
+
elif ggggg.strip().startswith("Status Legend:"):
|
63 |
+
break
|
64 |
+
elif kkkkk:
|
65 |
+
print(f" {ggggg}")
|
66 |
+
|
67 |
+
qqqqq.wait()
|
68 |
+
os.close(woiii)
|
69 |
+
|
70 |
+
extract_tar = f'pv {fn} | lz4 -d | tar xf -'
|
71 |
+
|
72 |
+
ikan, asin = pty.openpty()
|
73 |
+
proc = subprocess.Popen(extract_tar, shell=True, stdin=asin, stdout=asin, stderr=asin, close_fds=True)
|
74 |
+
os.close(asin)
|
75 |
+
|
76 |
+
while True:
|
77 |
+
r, _, _ = select.select([ikan], [], [], 0.1)
|
78 |
+
if ikan in r:
|
79 |
+
try:
|
80 |
+
jemuran = os.read(ikan, 1024).decode('utf-8', 'ignore')
|
81 |
+
print(jemuran, end='')
|
82 |
+
except OSError as e:
|
83 |
+
if e.errno == errno.EIO:
|
84 |
+
break
|
85 |
+
if proc.poll() is not None:
|
86 |
+
break
|
87 |
+
|
88 |
+
proc.wait()
|
89 |
+
os.close(ikan)
|
90 |
+
if os.path.exists(fn):
|
91 |
+
os.remove(fn)
|
92 |
+
else:
|
93 |
+
print(f"Warning: File {fn} not found, skipping removal.")
|
94 |
+
|
95 |
+
|
96 |
+
oppai = '/kaggle/venv'
|
97 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "pip*")}')
|
98 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "python*")}')
|
99 |
+
os.system(f'python -m venv {oppai}')
|
100 |
+
say('【 {red} Setup Completed {d} 】 {red}')
|
101 |
+
|
102 |
+
if __name__ == '__main__':
|
103 |
+
venv_in()
|
104 |
+
assu = os.path.join(xxx, 'venv.py')
|
105 |
+
os.remove(assu)
|
Stable-diffusion/ui/venv220.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, sys, os, time, select, pty, errno
|
2 |
+
|
3 |
+
xxx = '/kaggle/working'
|
4 |
+
|
5 |
+
assu = os.path.join(xxx, 'venv.py')
|
6 |
+
os.chdir(xxx)
|
7 |
+
os.system(f'curl -sLO https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py')
|
8 |
+
sys.path.append(xxx)
|
9 |
+
time.sleep(1)
|
10 |
+
from pantat88 import say, download
|
11 |
+
say('【{red} Installing VENV{d} 】{red}')
|
12 |
+
|
13 |
+
auuuwooo = [
|
14 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/get_ip.py",
|
15 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/new_tunnel",
|
16 |
+
f"curl -Lo /usr/bin/cl https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64",
|
17 |
+
f"apt-get update",
|
18 |
+
f"apt -y install lz4 pv aria2",
|
19 |
+
f"pip install -q git+https://github.com/DEX-1101/colablib",
|
20 |
+
f"npm install -g localtunnel",
|
21 |
+
f"chmod +x /usr/bin/cl"]
|
22 |
+
|
23 |
+
for tarzan in auuuwooo:
|
24 |
+
subprocess.run(tarzan.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
25 |
+
|
26 |
+
def venv_in():
|
27 |
+
os.chdir('/kaggle')
|
28 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv_torch220.tar.lz4'
|
29 |
+
fn = 'venv_torch220.tar.lz4'
|
30 |
+
download(url)
|
31 |
+
|
32 |
+
extract_tar = f'pv {fn} | lz4 -d | tar xf -'
|
33 |
+
ikan, asin = pty.openpty()
|
34 |
+
proc = subprocess.Popen(extract_tar, shell=True, stdin=asin, stdout=asin, stderr=asin, close_fds=True)
|
35 |
+
os.close(asin)
|
36 |
+
while True:
|
37 |
+
r, _, _ = select.select([ikan], [], [], 0.1)
|
38 |
+
if ikan in r:
|
39 |
+
try:
|
40 |
+
jemuran = os.read(ikan, 1024).decode('utf-8', 'ignore')
|
41 |
+
print(jemuran, end='')
|
42 |
+
|
43 |
+
except OSError as e:
|
44 |
+
if e.errno == errno.EIO:
|
45 |
+
break
|
46 |
+
|
47 |
+
if proc.poll() is not None:
|
48 |
+
break
|
49 |
+
|
50 |
+
proc.wait()
|
51 |
+
os.close(ikan)
|
52 |
+
os.remove(fn)
|
53 |
+
|
54 |
+
oppai = '/kaggle/venv'
|
55 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "pip*")}')
|
56 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "python*")}')
|
57 |
+
os.system(f'python -m venv {oppai}')
|
58 |
+
|
59 |
+
venv_in()
|
60 |
+
os.chdir(xxx)
|
61 |
+
say('【{red} VENV Setup Completed{d} 】{red}')
|
62 |
+
os.remove(assu)
|
Stable-diffusion/ui/venv_19-6-2024.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, sys, os, time, select, pty, errno
|
2 |
+
|
3 |
+
xxx = '/kaggle/working'
|
4 |
+
|
5 |
+
assu = os.path.join(xxx, 'venv.py')
|
6 |
+
os.chdir(xxx)
|
7 |
+
os.system(f'curl -sLO https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py')
|
8 |
+
sys.path.append(xxx)
|
9 |
+
time.sleep(1)
|
10 |
+
from pantat88 import say, download
|
11 |
+
say('【{red} Installing VENV{d} 】{red}')
|
12 |
+
|
13 |
+
auuuwooo = [
|
14 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/get_ip.py",
|
15 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/new_tunnel",
|
16 |
+
f"curl -Lo /usr/bin/cl https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64",
|
17 |
+
f"apt-get update",
|
18 |
+
f"apt -y install lz4 pv aria2",
|
19 |
+
f"pip install -q git+https://github.com/DEX-1101/colablib",
|
20 |
+
f"npm install -g localtunnel",
|
21 |
+
f"chmod +x /usr/bin/cl"]
|
22 |
+
|
23 |
+
for tarzan in auuuwooo:
|
24 |
+
subprocess.run(tarzan.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
25 |
+
|
26 |
+
def venv_in():
|
27 |
+
os.chdir('/kaggle')
|
28 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv_19-6-2024.tar.lz4'
|
29 |
+
fn = 'venv_19-6-2024.tar.lz4'
|
30 |
+
download(url)
|
31 |
+
|
32 |
+
extract_tar = f'pv {fn} | lz4 -d | tar xf -'
|
33 |
+
ikan, asin = pty.openpty()
|
34 |
+
proc = subprocess.Popen(extract_tar, shell=True, stdin=asin, stdout=asin, stderr=asin, close_fds=True)
|
35 |
+
os.close(asin)
|
36 |
+
while True:
|
37 |
+
r, _, _ = select.select([ikan], [], [], 0.1)
|
38 |
+
if ikan in r:
|
39 |
+
try:
|
40 |
+
jemuran = os.read(ikan, 1024).decode('utf-8', 'ignore')
|
41 |
+
print(jemuran, end='')
|
42 |
+
|
43 |
+
except OSError as e:
|
44 |
+
if e.errno == errno.EIO:
|
45 |
+
break
|
46 |
+
|
47 |
+
if proc.poll() is not None:
|
48 |
+
break
|
49 |
+
|
50 |
+
proc.wait()
|
51 |
+
os.close(ikan)
|
52 |
+
os.remove(fn)
|
53 |
+
|
54 |
+
oppai = '/kaggle/venv'
|
55 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "pip*")}')
|
56 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "python*")}')
|
57 |
+
os.system(f'python -m venv {oppai}')
|
58 |
+
|
59 |
+
venv_in()
|
60 |
+
os.chdir(xxx)
|
61 |
+
say('【{red} VENV Setup Completed{d} 】{red}')
|
62 |
+
os.remove(assu)
|
Stable-diffusion/ui/venvv.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, sys, os, time, select, pty, errno
|
2 |
+
|
3 |
+
xxx = '/kaggle/working'
|
4 |
+
|
5 |
+
assu = os.path.join(xxx, 'venv.py')
|
6 |
+
os.chdir(xxx)
|
7 |
+
os.system(f'curl -sLO https://raw.githubusercontent.com/gutris1/segsmaker/main/kaggle/script/pantat88.py')
|
8 |
+
sys.path.append(xxx)
|
9 |
+
time.sleep(1)
|
10 |
+
from pantat88 import say, download
|
11 |
+
say('【{red} Installing VENV{d} 】{red}')
|
12 |
+
|
13 |
+
auuuwooo = [
|
14 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/get_ip.py",
|
15 |
+
f"curl -LO https://github.com/DEX-1101/sd-webui-notebook/raw/main/res/new_tunnel",
|
16 |
+
f"curl -Lo /usr/bin/cl https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64",
|
17 |
+
f"apt-get update",
|
18 |
+
f"apt -y install lz4 pv aria2",
|
19 |
+
f"pip install -q git+https://github.com/DEX-1101/colablib",
|
20 |
+
f"npm install -g localtunnel",
|
21 |
+
f"chmod +x /usr/bin/cl"]
|
22 |
+
|
23 |
+
for tarzan in auuuwooo:
|
24 |
+
subprocess.run(tarzan.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
25 |
+
|
26 |
+
def venv_in():
|
27 |
+
os.chdir('/kaggle')
|
28 |
+
url = 'https://huggingface.co/pantat88/back_up/resolve/main/venv_torch220.tar.lz4'
|
29 |
+
fn = 'venv_torch220.tar.lz4'
|
30 |
+
download(url)
|
31 |
+
|
32 |
+
extract_tar = f'pv {fn} | lz4 -d | tar xf -'
|
33 |
+
ikan, asin = pty.openpty()
|
34 |
+
proc = subprocess.Popen(extract_tar, shell=True, stdin=asin, stdout=asin, stderr=asin, close_fds=True)
|
35 |
+
os.close(asin)
|
36 |
+
while True:
|
37 |
+
r, _, _ = select.select([ikan], [], [], 0.1)
|
38 |
+
if ikan in r:
|
39 |
+
try:
|
40 |
+
jemuran = os.read(ikan, 1024).decode('utf-8', 'ignore')
|
41 |
+
print(jemuran, end='')
|
42 |
+
|
43 |
+
except OSError as e:
|
44 |
+
if e.errno == errno.EIO:
|
45 |
+
break
|
46 |
+
|
47 |
+
if proc.poll() is not None:
|
48 |
+
break
|
49 |
+
|
50 |
+
proc.wait()
|
51 |
+
os.close(ikan)
|
52 |
+
os.remove(fn)
|
53 |
+
|
54 |
+
oppai = '/kaggle/venv'
|
55 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "pip*")}')
|
56 |
+
os.system(f'rm -rf {os.path.join(oppai, "bin", "python*")}')
|
57 |
+
os.system(f'python -m venv {oppai}')
|
58 |
+
say('【{red} VENV Setup Completed{d} 】{red}')
|
59 |
+
|
60 |
+
venv_in()
|
61 |
+
os.chdir(xxx)
|
62 |
+
os.remove(assu)
|
Stable-diffusion/ui/zzzzzz.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:054e950e72181bb45ddbc7106d3625de406477725b5b313a91fe4522f03dbe0a
|
3 |
+
size 6865699
|
Stable-diffusion/venv-fusion.tar.lz4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2186577551c3e55c2c1c8420cf3cb8bab234aceb7ca5f2463181a1abf95c745
|
3 |
+
size 4731403914
|
Stable-diffusion/venv-sd-trainer.tar.lz4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73a61eabc0e539b54d42dbfdea652279a9744df660e1841e62a29938138ed2fb
|
3 |
+
size 5481814036
|