--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - didiudom94/gentlemen metrics: - bleu model-index: - name: Whisper Small Ko to En results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Gentlemen type: didiudom94/gentlemen args: 'split: train' metrics: - name: Bleu type: bleu value: 0.1392438982977928 --- # Whisper Small Ko to En This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Gentlemen dataset. It achieves the following results on the evaluation set: - Loss: 1.3270 - Bleu: 0.1392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.8182 | 0.2253 | 1000 | 1.6561 | 0.1004 | | 1.4212 | 0.4507 | 2000 | 1.4204 | 0.1195 | | 1.3578 | 0.6760 | 3000 | 1.3638 | 0.1320 | | 1.3446 | 0.9013 | 4000 | 1.3265 | 0.1356 | | 0.9391 | 1.1266 | 5000 | 1.3270 | 0.1392 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3