from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers import GPT2Config logger = logging.get_logger(__name__) class LOLAConfig(PretrainedConfig): """ This is the configuration class is a modified copy of https://huggingface.co/openai-community/gpt2 with MoE support. """ model_type = "lola_v1" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=100096, n_positions=2048, n_embd=2048, n_layer=24, n_head=16, n_inner=8192, activation_function="gelu_new", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, scale_attn_weights=True, use_cache=True, bos_token_id=100095, eos_token_id=100095, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False, num_experts=16, topk=1, router_aux_loss_coef=0.01, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.reorder_and_upcast_attn = reorder_and_upcast_attn self.num_experts = num_experts self.topk = topk self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.router_aux_loss_coef = router_aux_loss_coef super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)