--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4602 - Der: 0.1828 - False Alarm: 0.0584 - Missed Detection: 0.0717 - Confusion: 0.0528 ## Model description This segmentation model has been trained on English data (Callhome) using [diarizers](https://github.com/huggingface/diarizers/tree/main). It can be loaded with two lines of code: ```python from diarizers import SegmentationModel segmentation_model = SegmentationModel().from_pretrained('diarizers-community/speaker-segmentation-fine-tuned-callhome-eng') ``` To use it within a pyannote speaker diarization pipeline, load the [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) pipeline, and convert the model to a pyannote compatible format: ```python from pyannote.audio import Pipeline import torch device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") # load the pre-trained pyannote pipeline pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1") pipeline.to(device) # replace the segmentation model with your fine-tuned one segmentation_model = segmentation_model.to_pyannote_model() pipeline._segmentation.model = model.to(device) ``` You can now use the pipeline on audio examples: ```python # load dataset example dataset = load_dataset("diarizers-community/callhome", "jpn", split="data") sample = dataset[0]["audio"] # pre-process inputs sample["waveform"] = torch.from_numpy(sample.pop("array")[None, :]).to(device, dtype=model.dtype) sample["sample_rate"] = sample.pop("sampling_rate") # perform inference diarization = pipeline(sample) # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4123 | 1.0 | 362 | 0.4801 | 0.1930 | 0.0627 | 0.0741 | 0.0563 | | 0.3906 | 2.0 | 724 | 0.4558 | 0.1836 | 0.0589 | 0.0727 | 0.0519 | | 0.3753 | 3.0 | 1086 | 0.4643 | 0.1830 | 0.0557 | 0.0746 | 0.0527 | | 0.3632 | 4.0 | 1448 | 0.4566 | 0.1821 | 0.0564 | 0.0728 | 0.0529 | | 0.3475 | 5.0 | 1810 | 0.4602 | 0.1828 | 0.0584 | 0.0717 | 0.0528 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1