{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdbf8601ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659172460.2953267, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAmLhCPojA/T1+GyU/eku+P8YXgD0bTHXA7tKdPsw9Yr/37o0/By86vqBEa79GIs2/v+lKvxmCOkA5zDI+kzCHv4m5nz6rLE5A+qYrP/NAFT6+w3G/53QaPe0bu729Ybk/VNbRv5Ytwz7hrN2/K4ZlvwZHFr7XDu0+1KtDP5vW2j93IOo+YuI4PoFtuz5FQey+b9JoPxqGjL3B01m//S+Uv1949L6ZLBdAZxs5PtkHdz+YHko/Dr1CQFyGKD9zeMq/5w5mvwy5Vj+XKno+fSdWP1TW0b+WLcM+4azdv9XDjj9RoSI8vSPCPc53IT8IRD4/XRsRPzzdNz9zulW/xD+ePofV1L9xIWC+F+IVPcqFGz9zioC+KEYcvzwr7T7lKZy8kt49P2yykb90Kq6/CgRzPgwccb8tioE8wliLP/wHo7y9KBw/li3DPt7REz/Vw44/gvEyPxUswb4g55g+NTHCP5VM4L9/Oj8/h0OMvzDSyb79TZy/G3dvP4EkeT/ba/s+tlDzv/vRrL6VEew+P+JGPQPKvr+mrGO/H1cNvqNikT/yfHG/So8UPZ1eNz+8Rfu+vSgcP5Ytwz7e0RM/K4Zlv5R0lGIu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAH7xg7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSsla9AAAAAPRM/r8AAAAAd/0CvgAAAAA04Oo/AAAAAKgW1LwAAAAAvV3wPwAAAABuipQ9AAAAAE5b/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACV8EQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOtMHPQAAAACZStu/AAAAAAs/6j0AAAAAPpTpPwAAAAC+wQs+AAAAAKP42z8AAAAAIwKyPQAAAAApHfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Rm6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCZHyL0AAAAABRbzvwAAAACI3QA+AAAAAAhKAUAAAAAArYyDPQAAAADgS9o/AAAAAK4dZD0AAAAAFL/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdCSjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBP9JA7AAAAAM3DAMAAAAAApKKUPQAAAABE9+c/AAAAAPzLtz0AAAAA7Y7yPwAAAAAJYPc9AAAAAGvo4b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCjgVsUIs2MAWyUTegDjAF0lEdAqQxPmeUY9HV9lChoBkdAkLywAZKnN2gHTegDaAhHQKkQeNNJvpB1fZQoaAZHQJQ2VmK64DtoB03oA2gIR0CpE3yrgflqdX2UKGgGR0CWL/3+dbxFaAdN6ANoCEdAqRPUQ9RrJ3V9lChoBkdAlGvleruIAWgHTegDaAhHQKkY6FfReC11fZQoaAZHQJO5j+wTufFoB03oA2gIR0CpHQScbzbwdX2UKGgGR0CSVyJZ4fOlaAdN6ANoCEdAqR/7fxc3VHV9lChoBkdAko6f69CeE2gHTegDaAhHQKkgVFaSs8x1fZQoaAZHQIra7N+so2JoB03oA2gIR0CpJVOdPLxJdX2UKGgGR0CSyEliBoVVaAdN6ANoCEdAqSqym4y44XV9lChoBkdAj3TDjaPCEmgHTegDaAhHQKktpDm8ujB1fZQoaAZHQJHDXLhaTwFoB03oA2gIR0CpLf8wxnFpdX2UKGgGR0CSm7Gu9vjwaAdN6ANoCEdAqTMWq94/vHV9lChoBkdAlTnpHmRvFWgHTegDaAhHQKk3OREnb7F1fZQoaAZHQJKyeHSF49poB03oA2gIR0CpOintWuHOdX2UKGgGR0CT7aTKDCgsaAdN6ANoCEdAqTp/YpUgjnV9lChoBkdAkwRWXC0ngGgHTegDaAhHQKk/jKUVzp51fZQoaAZHQJNHnyxzJZJoB03oA2gIR0CpQ7Px6OYIdX2UKGgGR0COfKNCJGe+aAdN6ANoCEdAqUaxC0F8onV9lChoBkdAkrP2ACnxa2gHTegDaAhHQKlHB0wJw851fZQoaAZHQJKcv5SFXaJoB03oA2gIR0CpTBsxfv4NdX2UKGgGR0CWiLdZJTVEaAdN6ANoCEdAqVBELc9GJHV9lChoBkdAkCcmcWj46GgHTegDaAhHQKlTOqtHQQd1fZQoaAZHQJc/oeHSF49oB03oA2gIR0CpU5NH6MzedX2UKGgGR0CV8sOEM9bHaAdN6ANoCEdAqVif+dbxE3V9lChoBkdAkbNdbs4T9WgHTegDaAhHQKlcs7FsHjZ1fZQoaAZHQJBXjjZL7GhoB03oA2gIR0CpX5npbD/EdX2UKGgGR0CUxt3h4t6HaAdN6ANoCEdAqV/v/Lkjo3V9lChoBkdAl+lY0hvBJ2gHTegDaAhHQKllAfTTfBN1fZQoaAZHQJBHNCdBjWloB03oA2gIR0CpaSjUNKAbdX2UKGgGR0CT0cdP+GXYaAdN6ANoCEdAqWwVUsFt9HV9lChoBkdAkNrYh6jWTWgHTegDaAhHQKlsajVQQ+V1fZQoaAZHQJUVF0NjLB9oB03oA2gIR0CpcYpEQXhwdX2UKGgGR0CRRsI8hcJMaAdN6ANoCEdAqXW+2Xsw+XV9lChoBkdAkHS89wFTvWgHTegDaAhHQKl4xgiu+yt1fZQoaAZHQJSZI0+C9RJoB03oA2gIR0CpeST+NtIkdX2UKGgGR0CU34Pdl/YraAdN6ANoCEdAqX5DxgAp8XV9lChoBkdAk9hv6GgzxmgHTegDaAhHQKmCda3Zwn91fZQoaAZHQJZ+3TLGJepoB03oA2gIR0CphYfz8P4EdX2UKGgGR0CSzJyDIzWPaAdN6ANoCEdAqYXhSUC7snV9lChoBkdAiWrIsAeaKGgHTegDaAhHQKmK+jRD1Gt1fZQoaAZHQJhVCgnMMZxoB03oA2gIR0Cpjw3r+o9+dX2UKGgGR0CTb3DcuanaaAdN6ANoCEdAqZIIkHD77HV9lChoBkdAlrZvJFLFoGgHTegDaAhHQKmSYlt0mt11fZQoaAZHQJd4UiRnvlVoB03oA2gIR0Cpl547zTWodX2UKGgGR0CQfP8GcFyJaAdN6ANoCEdAqZwJcC5mRXV9lChoBkdAl5RqXa8HwGgHTegDaAhHQKmfADDCP6t1fZQoaAZHQJZO0nXumaZoB03oA2gIR0Cpn1eT/yXldX2UKGgGR0CHaCKzAvcraAdN6ANoCEdAqaSNfw7T2HV9lChoBkdAkOwfkaMrE2gHTegDaAhHQKmoq+ueSSx1fZQoaAZHQJWdZXU6PsBoB03oA2gIR0Cpq7WSdOIqdX2UKGgGR0CVE5xe9i+daAdN6ANoCEdAqawWRNh3JXV9lChoBkdAd+o/CqIacmgHTegDaAhHQKmxMkPczqN1fZQoaAZHQIiACErXlKdoB03oA2gIR0CptV1TR6WxdX2UKGgGR0CWoVfOUt7KaAdN6ANoCEdAqbhRqmCROnV9lChoBkdAkvUX4oJAuGgHTegDaAhHQKm4rKJVKf51fZQoaAZHQJVr1PqLS/loB03oA2gIR0Cpvbdic5KfdX2UKGgGR0CTfN68QI2PaAdN6ANoCEdAqcHdLL6k7HV9lChoBkdAlC/RfrrxAmgHTegDaAhHQKnE2ugYgq51fZQoaAZHQJAot9JBgNRoB03oA2gIR0CpxTU7bL2YdX2UKGgGR0CUjsU7jkuIaAdN6ANoCEdAqcpIbEP1+XV9lChoBkdAlUQ4gmqo62gHTegDaAhHQKnOWsXBP9F1fZQoaAZHQJXvEu27Wd5oB03oA2gIR0Cp0TzTF2mpdX2UKGgGR0CUlPNdZ7ojaAdN6ANoCEdAqdGQyZa3Z3V9lChoBkdAlzs8OXmeUmgHTegDaAhHQKnXdlWfbsZ1fZQoaAZHQJJekblzU7VoB03oA2gIR0Cp29xxLkCFdX2UKGgGR0CWrwtOmBOIaAdN6ANoCEdAqd62cJ+lTHV9lChoBkdAluEONT987mgHTegDaAhHQKnfES7oSth1fZQoaAZHQJM6hB1LamJoB03oA2gIR0Cp5AOpsGgSdX2UKGgGR0CMR+cbR4QjaAdN6ANoCEdAqegWRkmQbXV9lChoBkdAlU1SrLhaT2gHTegDaAhHQKnrAnOSntR1fZQoaAZHQJRDzIbOu7poB03oA2gIR0Cp61y6lLvkdX2UKGgGR0CY/ggkka/AaAdN6ANoCEdAqfBkjZ+QVHV9lChoBkdAmFE3l0YCQ2gHTegDaAhHQKn0d7iQ1aZ1fZQoaAZHQJSmB3jdYXBoB03oA2gIR0Cp92z7/GVBdX2UKGgGR0CAOwHUMG5daAdN6ANoCEdAqffFgfEGaHV9lChoBkdAlcMCk43m3mgHTegDaAhHQKn85rFfiP11fZQoaAZHQJP4aNipeeFoB03oA2gIR0CqAQW9tdiVdX2UKGgGR0CU+n580DU3aAdN6ANoCEdAqgPxRMvh63V9lChoBkdAkYr/fTCtR2gHTegDaAhHQKoESaXrt3R1fZQoaAZHQJODUa72+PBoB03oA2gIR0CqCU7/wRXfdX2UKGgGR0CTLiD6nBLxaAdN6ANoCEdAqg1aeRPoFHV9lChoBkdAlgo9DUmUn2gHTegDaAhHQKoQSgcLjPx1fZQoaAZHQJFIXsIE8q5oB03oA2gIR0CqEKPpQk5ZdX2UKGgGR0CTzr6oESuhaAdN6ANoCEdAqhWqIHkcTHV9lChoBkdAlKI5JGvwE2gHTegDaAhHQKoZw20iQkp1fZQoaAZHQJH+w/KQq7RoB03oA2gIR0CqHL4W1twadX2UKGgGR0CTE85iVjZtaAdN6ANoCEdAqh0XKfWc0HV9lChoBkdAkRJDjzZpSWgHTegDaAhHQKoiHdB0ITp1fZQoaAZHQJH4s6CDmKZoB03oA2gIR0CqJkfLcKw7dX2UKGgGR0CQSpCuloDgaAdN6ANoCEdAqik9SCOFQHV9lChoBkdAiERl67dzn2gHTegDaAhHQKoplb6guh91fZQoaAZHQJOmJWsA/9poB03oA2gIR0CqLpLFXJYDdX2UKGgGR0CTR+GY8dPtaAdN6ANoCEdAqjKkQXhwVHV9lChoBkdAl0IbuhK15WgHTegDaAhHQKo1ikYXO4Z1fZQoaAZHQJBJYB0ZFXtoB03oA2gIR0CqNd9z4k/sdX2UKGgGR0CVi89jPOY6aAdN6ANoCEdAqjryFEiMYXV9lChoBkdAjUdtb9qDb2gHTegDaAhHQKo/EY8dPtV1fZQoaAZHQJJPuU0Nz8xoB03oA2gIR0CqQfuS4e90dX2UKGgGR0CQNBqTKT0QaAdN6ANoCEdAqkJQ3cYZVHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}