--- base_model: KISTI-AI/scideberta-cs tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scideberta-cs-ner results: [] --- # scideberta-cs-ner This model is a fine-tuned version of [KISTI-AI/scideberta-cs](https://huggingface.co/KISTI-AI/scideberta-cs) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1552 - Precision: 0.4943 - Recall: 0.5475 - F1: 0.5195 - Accuracy: 0.9589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 60 | 0.1980 | 0.3445 | 0.2723 | 0.3042 | 0.9530 | | No log | 2.0 | 120 | 0.1579 | 0.4444 | 0.4358 | 0.4401 | 0.9582 | | No log | 3.0 | 180 | 0.1520 | 0.4751 | 0.5321 | 0.5020 | 0.9568 | | No log | 4.0 | 240 | 0.1518 | 0.4955 | 0.5433 | 0.5183 | 0.9592 | | No log | 5.0 | 300 | 0.1552 | 0.4943 | 0.5475 | 0.5195 | 0.9589 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1