--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-ner results: [] --- # roberta-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1963 - Precision: 0.3814 - Recall: 0.4134 - F1: 0.3968 - Accuracy: 0.9525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 60 | 0.2553 | 0.1878 | 0.1075 | 0.1368 | 0.9435 | | No log | 2.0 | 120 | 0.2114 | 0.3456 | 0.2235 | 0.2714 | 0.9492 | | No log | 3.0 | 180 | 0.2007 | 0.3372 | 0.3673 | 0.3516 | 0.9494 | | No log | 4.0 | 240 | 0.1976 | 0.3618 | 0.3911 | 0.3758 | 0.9517 | | No log | 5.0 | 300 | 0.1963 | 0.3814 | 0.4134 | 0.3968 | 0.9525 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1