--- license: apache-2.0 datasets: - dev2bit/es2bash language: - es pipeline_tag: text2text-generation tags: - code - bash widget: - text: Muestra el contenido de file.py que se encuentra en ~/project/ example_title: cat - text: Lista los 3 primeros archivos en /bin example_title: ls - text: Por favor, cambia al directorio /home/user/project/ example_title: cd - text: Lista todos los átomos del universo example_title: noCommand - text: ls -lh example_title: literal - text: file.txt example_title: simple --- # es2bash-mt5: Modelo de traducción de español a Bashcd
Developed by dev2bit, es2bash-mt5 is a language transformer model that is capable of predicting the optimal Bash command given a natural language request in Spanish. This model represents a major advancement in human-computer interaction, providing a natural language interface for Unix operating system commands. ## About the Model es2bash-mt5 is a fine-tuning model based on mt5-small. It has been trained on the dev2bit/es2bash dataset, which specializes in translating natural language in Spanish into Bash commands. This model is optimized for processing requests related to the commands: * `cat` * `ls` * `cd` ## Usage Below is an example of how to use es2bash-mt5 with the Hugging Face Transformers library: ```python from transformers import pipeline translator = pipeline('translation', model='dev2bit/es2bash-mt5') request = "listar los archivos en el directorio actual" translated = translator(request, max_length=512) print(translated[0]['translation_text']) ``` This will print the Bash command corresponding to the given Spanish request. ## Contributions We appreciate your contributions! You can help improve es2bash-mt5 in various ways, including: * Testing the model and reporting any issues or suggestions in the Issues section. * Improving the documentation. * Providing usage examples. --- Desarrollado por dev2bit, `es2bash-mt5` es un modelo transformador de lenguaje que tiene la capacidad de predecir el comando Bash óptimo dada una solicitud en lenguaje natural en español. Este modelo representa un gran avance en la interacción humano-computadora, proporcionando una interfaz de lenguaje natural para los comandos del sistema operativo Unix. ## Sobre el modelo `es2bash-mt5` es un modelo de ajuste fino basado en `mt5-small`. Ha sido entrenado en el conjunto de datos `dev2bit/es2bash`, especializado en la traducción de lenguaje natural en español a comandos Bash. Este modelo está optimizado para procesar solicitudes relacionadas con los comandos: * `cat` * `ls` * `cd` ## Uso A continuación, se muestra un ejemplo de cómo usar `es2bash-mt5` con la biblioteca Hugging Face Transformers: ```python from transformers import pipeline translator = pipeline('translation', model='dev2bit/es2bash-mt5') request = "listar los archivos en el directorio actual" translated = translator(request, max_length=512) print(translated[0]['translation_text']) ``` Esto imprimirá el comando Bash correspondiente a la solicitud dada en español. ## Contribuciones Agradecemos sus contribuciones! Puede ayudar a mejorar es2bash-mt5 de varias formas, incluyendo: * Probar el modelo y reportar cualquier problema o sugerencia en la sección de Issues. * Mejorando la documentación. * Proporcionando ejemplos de uso. --- This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the es2bash dataset. It achieves the following results on the evaluation set: - Loss: 0.0928 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 21.394 | 1.0 | 672 | 1.7470 | | 2.5294 | 2.0 | 1344 | 0.6350 | | 0.5873 | 3.0 | 2016 | 0.2996 | | 0.3802 | 4.0 | 2688 | 0.2142 | | 0.2951 | 5.0 | 3360 | 0.1806 | | 0.225 | 6.0 | 4032 | 0.1565 | | 0.2065 | 7.0 | 4704 | 0.1461 | | 0.1944 | 8.0 | 5376 | 0.1343 | | 0.174 | 9.0 | 6048 | 0.1281 | | 0.1647 | 10.0 | 6720 | 0.1207 | | 0.1566 | 11.0 | 7392 | 0.1140 | | 0.1498 | 12.0 | 8064 | 0.1106 | | 0.1382 | 13.0 | 8736 | 0.1076 | | 0.1393 | 14.0 | 9408 | 0.1042 | | 0.1351 | 15.0 | 10080 | 0.1019 | | 0.13 | 16.0 | 10752 | 0.0998 | | 0.1292 | 17.0 | 11424 | 0.0983 | | 0.1265 | 18.0 | 12096 | 0.0973 | | 0.1255 | 19.0 | 12768 | 0.0969 | | 0.1216 | 20.0 | 13440 | 0.0956 | | 0.1216 | 21.0 | 14112 | 0.0946 | | 0.123 | 22.0 | 14784 | 0.0938 | | 0.113 | 23.0 | 15456 | 0.0931 | | 0.1185 | 24.0 | 16128 | 0.0929 | | 0.1125 | 25.0 | 16800 | 0.0928 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3