--- library_name: transformers base_model: llama_small_config.json tags: - generated_from_trainer model-index: - name: llama-3.2-350M-fourier results: [] --- # llama-3.2-350M-fourier This model is a fine-tuned version of [llama_small_config.json](https://huggingface.co/llama_small_config.json) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 6.2583 | 0.0754 | 1000 | 5.1105 | | 4.7487 | 0.1508 | 2000 | 4.5762 | | 4.4098 | 0.2262 | 3000 | 4.3661 | | 4.2531 | 0.3016 | 4000 | 4.2368 | | 4.1448 | 0.3770 | 5000 | 4.1446 | | 4.0569 | 0.4524 | 6000 | 4.0733 | | 3.9844 | 0.5278 | 7000 | 4.0040 | | 3.9199 | 0.6032 | 8000 | 3.9439 | | 3.8622 | 0.6786 | 9000 | 3.8956 | | 3.8158 | 0.7541 | 10000 | 3.8521 | | 3.7792 | 0.8295 | 11000 | 3.8213 | | 3.7546 | 0.9049 | 12000 | 3.8034 | | 3.7425 | 0.9803 | 13000 | 3.7984 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.1.2+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1